Chứng minh rằng trong một tứ giác bất kỳ có ít nhất một góc không nhọn
cho 5 đoạn thẳng sao cho ba đoạn bất kỳ trong số đó có thể lập được một tam giác. Chứng minh rằng trong các tam giác tạo thành có ít nhất một tam giác mà cả ba góc đều nhọn
Cho 1 tứ giác ko có bất kì 2 góc nào bằng nhau. CHỨNG MINH tứ giác đó có ít nhất 1 góc tù và 1 góc nhọn
Một tứ giác lồi có độ dài bốn cạnh đều là số tự nhiên sao cho tổng ba số bất kì trong chúng chia hết cho số còn lại. Chứng minh rằng tứ giác đó có ít nhất hai cạnh bằng nhau.
Một tứ giác lồi có độ dài bốn cạnh đều là số tự nhiên sao cho tổng ba số bất kì trong chúng chia hết cho số còn lại. Chứng minh rằng tứ giác đó có ít nhất hai cạnh bằng nhau.
Một tứ giác lồi có 4 cạnh đều là số tự nhiên sao cho tổng 3 số bất kì trong chúng chia hết cho số còn lại. Chứng minh rằng tứ giác đó có ít nhất 2 cạnh bằng nhau ?
Ta sẽ dùng phản chứng
Gọi 4 cạnh của tứ giác là a , b , c , d ( a,b,c,d \(\inℕ^∗\))
Giả sử không có bất kì 2 cạnh nào bằng nhau
Đặt \(\hept{\begin{cases}x=\frac{b+c+d}{a}\\y=\frac{c+d+a}{b}\\z=\frac{d+a+b}{c}\end{cases}}\left(x;y;z\inℕ^∗\right)\)(Do tổng 3 cạnh bất kì chia hết cho cạnh còn lại)
Theo bất đẳng thức trong tứ giác thì dễ thấy \(x;y;z>1\)
Mà x,y,z là số tự nhiên nên \(x;y;z\ge2\)
Không mất tính tổng quát của bài toán ta giả sử a > b > c > d thì khi đó x < y < z
Ta có : \(\hept{\begin{cases}x\ge2\\y>x\end{cases}}\Rightarrow y\ge3\)
tương tự : \(z\ge4\)
Từ điều giả sử\(\Rightarrow\) \(\hept{\begin{cases}b+c+d\ge2a\\c+d+a\ge3b\\d+a+b\ge4c\end{cases}}\)
Cộng 3 vế vào ta được \(2a+2b+2c+3d\ge2a+3b+4c\)
\(\Rightarrow3d\ge b+2c\)(Vô lí do b > c > d)
Nên điều giả sử là sai
Vậy luôn tồn tại ít nhất 2 cạnh bằng nhau trong tứ giác đó
Gỉa sử tứ giác ABCD có các góc A,B,C,D < 90.
Ta có: A+B+C+B<90+90+90+90=360
Mà tổng các góc trong 1 tứ giác bằng 360 nên một tứ giác không thể có các góc đều là góc nhọn.
Gỉa sử tứ giác ABCD có các góc A,B,C,D > 90.
Ta có: A+B+C+B>90+90+90+90=360
Mà tổng các góc trong 1 tứ giác bằng 360 nên một tứ giác không thể có các góc đều là góc tù
Chứng minh rằng các góc của một tứ giác không thể đều là góc nhọn, không thể đều là góc tù.
Giả sử cả bốn góc của tứ giác đều là góc nhọn ( tức là mỗi góc có số đo nhỏ hơn 90o) thì tổng bốn góc của tứ giác nhỏ hơn:
90 ° + 90 ° + 90 ° + 90 ° = 360 °
Vậy bốn góc của tứ giác không thể đều là góc nhọn.
Giả sử cả bốn góc của tứ giác đều là góc tù ( tức là mỗi góc có số đo lớn hơn 90 ° ) thì tổng bốn góc của tứ giác lớn hơn:
90 ° + 90 ° + 90 ° + 90 ° = 360 °
Vậy bốn góc của tứ giác không thể đều là góc tù.
cho 5 đoạn thẳng sao cho ba đoạn bất kỳ trong số đó có thể laakp được 1 tam giác.chứng minh trong các tam giác tạo thành có ít nhất 1 tam giác mà cả 3 góc đều nhọn
chứng minh rằng trong một tam giác đối diện với cạnh nhỏ nhất là góc nhọn. Có thể kết luận trong một tam giác đối diện với cạnh lớn nhất là góc tù không?
Vì góc tù là góc lớn nhất trong 1 tam giác => có thể kết luận như vậy