cho a,b,c thõa mãn 2a+b+c=0. chứng minh 2a^3+b^3+c^3=3a(a+b)(c-b)
Cho a,b,c thỏa mãn: \(2a+b+c=0\) . CHỨNG MINH: \(2a^3+b^3+c^3=3a\left(a+b\right)\left(c-b\right)\)
cho a,b,c là thoả mãn 2a+b+c=0 chứng minh 2a^2 +b^2 +c^2=3a(a+b)(c-b)
Cho a,b,c thỏa mãn (3a+3b+3c)3 = 24 + (3a+b-c)3 + (3b+c-a)3 + (3c+a-b)3 chứng minh (a+2b)(b+2c)(c+2a)=1
Câu hỏi của Hoàng Đức Thịnh - Toán lớp 8 - Học toán với OnlineMath
Cho a,b,c thỏa mãn (3a+3b+3c)3 = 24 + (3a+b-c)3 + (3b+c-a)3 + (3c+a-b)3 chứng minh (a+2b)(b+2c)(c+2a)=1
Đặt \(\hept{\begin{cases}3a+b-c=x\\3b+c-a=y\\3c+a-b=z\end{cases}}\)
Khi đó điều kiện đb tương ứng
\(\left(x+y+z\right)^3=24+x^3+y^3+z^3\)
\(\Leftrightarrow3.\left(x+y\right).\left(x+z\right).\left(x+z\right)=24\)
\(\Rightarrow3.\left(2a+4b\right).\left(2b+4c\right).\left(2c+4a\right)=24\)
\(\Rightarrow\left(a+2b\right).\left(b+2c\right).\left(c+2a\right)=1\)
Do đó ta có đpcm
Chúc bạn học tốt!
cho a,b,c là các số thực không âm thõa mãn a^2+b^2+c^2>0 CMr (3a^2-bc)/(2a^2+b^2+c^2)+(3b^2-ca)/(2b^2+a^2+c^2)+(3c^2-ab)/(2c^2+a^2+c^2) =<3/2
đặt \(3^{13579}=m\).
Vì (3;13579)=1 nên (13579;m)=1 (*)
đem m+1 số \(13579;13579^2;...;13579^{m+1}\)chia cho m
Theo nguyên lý Dirichle trong m+1 số trên có ít nhất 2 số khi chia cho m có cùng số dư
Gọi 2 số đó là \(13579^x\&13579^y\)(tự đk cho x;y)
giả sử x>y
=>13579^x-13579^y chia hết cho m
=>\(13579^y\left(13579^{x-y}-1\right)\)chia hết cho m
mà 13579^y không chia hết cho m nên 13579^x-y -1 chia hết cho m
=>tồn tại n=x-y thỏa mãn đề bài
cho a,b,c là các số thực không âm thõa mãn a^2+b^2+c^2>0 CMr (3a^2-bc)/(2a^2+b^2+c^2)+(3b^2-ca)/(2b^2+a^2+c^2)+(3c^2-ab)/(2c^2+a^2+c^2) =<3/2
cho 2a+b+c=0. cmr: 2a^3+b^3+c^3=3a(a+b)(c-b)
Với a,b,c là các số thực thỏa mãn:
(3a+3b+3c)3=24+(3a+b-c)3+(3b+c-a)3+(3c+a-b)3
Chứng minh rằng (a+2b)(b+2c)(c+2a)=1
Cho a,b,c>1/2 thõa mãn a+b+c=3.Chứng minh
\(\frac{2a-1}{1+bc}+\frac{2b-1}{1+ca}+\frac{2c-1}{1+ab}\ge\frac{3}{2}\)
Cậu ch0 mik xl nhen! Mik k0 bít làm! Xl rất nhìu