Chứng minh : A >16
A= 1/√1 + 1/√2 + 1/√3 + ...1/√80
Chứng minh:
a. \(A=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\)
b.\(B=\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}< \dfrac{3}{16}\)
c. \(C=\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{79}+\dfrac{1}{80}>\dfrac{7}{12}\)
\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{80}+\sqrt{81}}\)
\(B=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{80}}\)
(1) Tính giá trị của A.
(2) Chứng minh rằng B>16.
*giải dùm mk câu (2) nha, câu(1) mk biết rùi ^^
cho a =1/2*3/4*5/6*...*79/80. chứng minh a <1/9
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{79}{80}\)
\(A< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{80}{81}\)
\(A^2< \frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}...\frac{79}{80}.\frac{80}{81}\)
\(A^2< \frac{1}{81}=\left(\frac{1}{9}\right)^2\)
=> \(A< \frac{1}{9}\left(đpcm\right)\)
Ta có:
\(\frac{1}{2}\)= 1- \(\frac{1}{2}\) < 1- \(\frac{1}{3}\)=\(\frac{2}{3}\)
\(\frac{3}{4}\)= 1- \(\frac{1}{4}\) < 1- \(\frac{1}{5}\) = \(\frac{4}{5}\)
...
\(\frac{79}{80}\) = 1- \(\frac{1}{80}\) < 1- \(\frac{1}{81}\)= \(\frac{80}{81}\)
Từ trên, ta có:
A= \(\frac{1}{2}\). \(\frac{3}{4}\). \(\frac{5}{6}\)...\(\frac{79}{80}\)< \(\frac{2}{3}\). \(\frac{4}{5}\). \(\frac{6}{7}\)...\(\frac{80}{81}\)
A2 < \(\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{80}{81}\right)\). \(\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{79}{80}\right)\)
A2 < \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{79}{80}.\frac{80}{81}\)
A2 <\(\frac{1.\left(2.3.4...79.80\right)}{\left(2.3.4...79.80\right).81}\)
A2 < \(\frac{1}{81}\) =\(\left(\frac{1}{9}\right)^2\)
A < \(\frac{1}{9}\) (đpcm)
Vậy A< \(\frac{1}{9}\)
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{79}{80}\)
\(A< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{80}{81}\)
\(A^2< \frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}....\frac{79}{80}.\frac{80}{81}\)
\(A^2< \frac{1}{81}=\left(\frac{1}{9}\right)^2\)
\(\Rightarrow A< \frac{1}{9}\left(\text{đ}pcm\right)\)
1.cho A=1/5 + 1/6 + 1/7 + 1/8 + .........+ 1/16 + 1/17 chứng minh A>1
2.cho A=1/5 + 1/6 + 1/7 + 1/8 + .........+ 1/16 + 1/17 chứng minh A<2
2.Có A=1/5+1/6+1/7+...+1/17
=(1/5+1/6+1/7+...+1/10)+(1/11+1/12+1/13+..+1/17)
Tới đây bạn tự tìm xem nó có bao nhiêu phân số
A<1/5.6+1/11.7=6/5+7/11=101/55=\(1\frac{46}{55}\)<2
VẬy A<2
1.Có A = tự viết ra
=(1/5+1/6+..+1/10)+(1/11+1/12+..+1/17)
Có bao nhiêu nhiêu ps tự tìm nhớ
A>1/10 .6+1/17 .7=Tự làm các bước =86/85>1
Vậy A>1
Làm ssao để tíh bao nhiu phân số vậy bạn?
1.Chứng minh rằng a)1/2-1/4+1/8-1/16+1/32-1/64<1/3 b)1/3-2/3^2+3/3^3-4/3^4+...+99/3^99-100/3^100<3/16
Cho A=1/2×3/4×5/6.....×79/80. Chứng minh A>1/13
Chứng minh :
a) \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\) \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{4^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
b)\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}< \frac{7}{12}\)
c) Cho \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)
Chứng minh \(1< S< 2\)
Cho A = 1/41 + 1/42 + 1/43 + .............+ 1/80. Chứng minh A > 1/2
thế thì cậu tự chứng minh đi làm sao cũng phải chứng minh toán học
Chứng minh rằng
a) 1/2 + 1/3 + 1/4 +...+1/63 > 2
b) 1/41 + 1/42 + 1/43 +...+1/79 + 1/80 > 7/12