Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Nguyễn Trà My
Xem chi tiết
Mới vô
17 tháng 7 2017 lúc 18:44

\(B=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\\ =\left(2-1\right)\cdot\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\right)\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}-\dfrac{1}{2^{99}}\\ =1-\dfrac{1}{2^{99}}< 1\)

Vậy \(B< 1\)

 Mashiro Shiina
17 tháng 7 2017 lúc 20:58

\(B=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\)

\(\Rightarrow2B=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\right)\)

\(\Rightarrow2B=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{97}}+\dfrac{1}{2^{98}}\)

\(\Rightarrow2B-B=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{97}}+\dfrac{1}{2^{98}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\right)\)

\(\Rightarrow B=1-\dfrac{1}{2^{99}}\)

\(\rightarrow B< 1\rightarrowđpcm\)

Nguyễn Vũ Anh
Xem chi tiết
Lê Hà Phương
5 tháng 9 2016 lúc 17:26

\(=\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{11\cdot13}\right)=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)\)

\(=\frac{1}{2}\left[\left(\frac{1}{3}-\frac{1}{13}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+...+\left(\frac{1}{11}-\frac{1}{11}\right)\right]=\frac{1}{2}\left[\left(\frac{13}{39}-\frac{3}{39}\right)+0+...+0\right]\)

\(=\frac{1}{2}\cdot\frac{10}{39}=\frac{5}{39}\)

Nguyễn Minh Thanh Trúc
Xem chi tiết
Nguyễn Minh Đăng
17 tháng 7 2020 lúc 21:40

Bài làm:

Ta có: \(\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{98.100}\)

\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)+\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{99}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(=\frac{1}{2}.\frac{98}{99}+\frac{1}{2}.\frac{49}{100}\)

\(=\frac{49}{99}+\frac{49}{200}\)

\(=\frac{14651}{19800}\)

Khách vãng lai đã xóa
Nguyễn Duy Nhật
Xem chi tiết
nguyễn thanh tùng
Xem chi tiết
nguyễn thanh tùng
31 tháng 8 2016 lúc 20:57

giúp mình với sau mình hậu tạ hiiiiiiiiiiiiiii

vuong que chi
11 tháng 11 2016 lúc 22:16

coi bộ khó rùi nha!

a hỏi ông goolge là ra

Nguyen Sinh Thanh
18 tháng 5 2020 lúc 18:35

B=+10

B=-1

B=-0,5

B=0,

B=1

Khách vãng lai đã xóa
Hoàng Phương Anh
Xem chi tiết
Komorebi
5 tháng 4 2018 lúc 17:56

Sửa đề : \(A=\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{120}\)

\(A=\dfrac{2}{20}+\dfrac{2}{30}+\dfrac{2}{42}+...+\dfrac{2}{240}\)

\(A=2.\left(\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+...+\dfrac{1}{240}\right)\)

\(A=2.\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{15.16}\right)\)

\(A=2.\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)

\(A=2.\left(\dfrac{1}{4}-\dfrac{1}{16}\right)=2.\left(\dfrac{4}{16}-\dfrac{1}{16}\right)=2.\dfrac{3}{16}=\dfrac{3}{8}\)

Đặng Nguyễn Kỳ My
Xem chi tiết
Tường Vy Nguyễn Thị
Xem chi tiết
ka nekk
28 tháng 2 2022 lúc 15:45

bài 1: 

\(2\dfrac{3}{4}:1\dfrac{1}{3}=\dfrac{11}{4}:\dfrac{4}{3}=\dfrac{33}{16}\)

Phạm Thị Yến Nhi
Xem chi tiết
Trần Hoàng Minh
16 tháng 5 2021 lúc 20:06

7/48 - (1/2 x 2 + 1/6 x 4 + 1/8 x 5 + 1/12 x 7 + 1/14 x 8) : x = 0

7/48 - (1 + 2/3 + 5/8 + 7/12 + 4/7) : x = 0 (đã rút gọn)

7/48 - (336/336 + 224/336 + 210/336 + 196/336 + 192/336) : x = 0 (quy đồng)

7/48 - 193/56 : x  = 0

193/56 : x = 0 + 7/48

193/56 : x = 7/48

              x = 193/56 : 7/48

              x = 1158/49

Khách vãng lai đã xóa