Cho a, b, c dương thoả mãn abc=1
Cmr: \(\frac{a-1}{b}+\frac{b-1}{c}+\frac{c-1}{a}\ge0\)
Cho các số thực dương a,b,c thỏa mãn abc=1.
CMR: \(\frac{a-1}{b+1}+\frac{b-1}{c+1}+\frac{c-1}{a+1}\ge0\)
Cho a,b,c dương thoả mãn abc=1. CMR
\(\frac{1}{1+a+b^2}+\frac{1}{1+b+c^2}+\frac{1}{1+c+a^2}\le1\)
Cho 3 số thực dương a,b,c thoả mãn abc=1.CMR \(\frac{1}{a\left(1+b\right)}+\frac{1}{b\left(1+c\right)}+\frac{1}{c\left(1+a\right)}\ge\frac{3}{2}\)
cho 3 số dương a,b,c thỏa mãn abc=1. Chứng minh rằng \(P=\frac{a-1}{c}+\frac{c-1}{b}+\frac{b-1}{a}\ge0\)
cho a,b,c là 3 số thực dương thoả mãn: a+b+c=3>CMR
\(\frac{a+1}{1+b^2}+\frac{b+1}{1+c^2}+\frac{c+1}{1+a^2}\ge3\)
Đặt: \(P=\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\)
Ta có:
\(\frac{a+1}{b^2+1}=a-\frac{ab^2-1}{b^2+1}\ge a-\frac{ab^2-1}{2b}=a-\frac{ab}{2}+\frac{1}{2b}\)
Tương tự ta có:
\(\frac{b+1}{c^2+1}\ge b-\frac{bc}{2}+\frac{1}{2c},\frac{c+1}{a^2+1}\ge c-\frac{ca}{2}+\frac{1}{2a}\)
\(\Rightarrow P\ge a+b+c-\frac{ab+bc+ca}{2}+\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3-\frac{\left(a+b+c\right)^2}{6}+\frac{1}{2}\left(\frac{\left(1+1+1\right)^2}{a+b+c}\right)\)
\(=3-\frac{9}{6}+\frac{1}{2}.\frac{9}{3}=3\)
Dấu bằng xảy ra khi a=b=c=1
mấy dạng kiểu này bạn cứ dùng cô-si ngược là ra
cho a,b,c dương thỏa mãn a+b+c=3 CMR : \(\frac{a\left(a+c-2b\right)}{1+ab}+\frac{b\left(b+a-2c\right)}{1+bc}+\frac{c\left(c+b-2a\right)}{1+ac}\ge0\)
cho các số dương a, b, c thoả mãn abc=1. Chứng minh: \(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\le1\)
Đặt \(\left(a;b;c\right)\rightarrow\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)
Ta có:
\(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\)
\(=\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\left(1\right)\)
Áp dụng BĐT phụ \(x^3+y^3\ge xy\left(x+y\right)\)
\(\Rightarrow\left(1\right)\le\frac{1}{xy\left(x+y\right)+xyz}+\frac{1}{yz\left(y+z\right)+xyz}+\frac{1}{zx\left(z+x\right)+xyz}\)
\(=\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{zx\left(x+y+z\right)}\)
\(=\frac{z}{xyz\left(x+y+z\right)}+\frac{x}{xyz\left(x+y+z\right)}+\frac{z}{xyz\left(x+y+z\right)}\)
\(=\frac{x+y+z}{xyz\left(x+y+z\right)}=1\)
Dấu "=" xảy ra tại \(x=y=z=1\) hay \(a=b=c=1\)
Nhầm dòng thứ 3 dưới lên ạ:(
\(\frac{z}{xyz\left(x+y+z\right)}+\frac{x}{xyz\left(x+y+z\right)}+\frac{y}{xyz\left(x+y+z\right)}\) mới đúng nha !
cho a,b,c dương thỏa mãn a+b+c=3 CMR : \(\frac{a\left(a+c-2b\right)}{1+ab}+\frac{b\left(b+a-2c\right)}{1+bc}+\frac{c\left(c+b-2a\right)}{1+ac}\ge0\)
\(\frac{a\left(a+c-2b\right)}{1+ab}+\frac{b\left(b+a-2c\right)}{1+bc}+\frac{c\left(c+b-2a\right)}{1+ca}\ge0\)
\(\Leftrightarrow\frac{a\left(1-b\right)}{1+ab}+\frac{b\left(1-c\right)}{1+bc}+\frac{c\left(1-a\right)}{1+ca}\ge0\)
\(\Leftrightarrow\left(\frac{a}{1+ab}+\frac{b}{1+bc}+\frac{c}{1+ca}\right)-\left(\frac{ab}{1+ab}+\frac{bc}{1+bc}+\frac{ca}{1+ca}\right)\ge0\)
\(\Leftrightarrow\left(\frac{a}{1+ab}+\frac{b}{1+bc}+\frac{c}{1+ca}\right)+\left(\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ca}\right)\ge3\)
Đến đây chia làm 2 bài toán :D
\(\frac{a}{1+ab}=a-\frac{a^2b}{1+ab}\ge a-\frac{a^2b}{2\sqrt{ab}}=a-\frac{\sqrt{a^3b}}{2}\)
Tương tự rồi cộng lại:
\(\frac{a}{1+ab}+\frac{b}{1+bc}+\frac{c}{1+ca}\ge a+b+c-\frac{1}{2}\left(\sqrt{a^3b}+\sqrt{b^3c}+\sqrt{c^3a}\right)\)
\(\ge a+b+c-\frac{1}{2}\cdot\frac{\left(a+b+c\right)^2}{3}=\frac{3}{2}\)
\(\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ca}\ge\frac{9}{3+ab+bc+ca}=\frac{9}{3+\frac{\left(a+b+c\right)^2}{3}}=\frac{3}{2}\)
Cộng 2 cái lại có ngay đpcm
Cho a,b,c là 3 số nguyên dương thoả mãn abc = 1. CMR
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\)>=\(\frac{3}{2}\)
Sử dụng bất đẳng thức \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) với ba số \(a,b,c\) và ba số dương \(x,y,z\) bất kỳ với chú ý rằng \(a^2b^2c^2=1\), ta có:
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}=\frac{b^2c^2}{a\left(b+c\right)}+\frac{c^2a^2}{b\left(c+a\right)}+\frac{a^2b^2}{c\left(a+b\right)}\ge\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\) \(\left(1\right)\)
Đặt \(x=ab;\) \(y=bc;\) và \(z=ca\) thì \(xyz=1\) \(\left(2\right)\) với \(x;\), \(y;\) và \(z\) \(>0\)
Khi đó áp dụng BĐT Cauchy cho bộ ba số nguyên dương \(x;\), \(y;\) và \(z\), ta được:
\(x+y+z\ge3\sqrt[3]{xyz}\) \(\Leftrightarrow\) \(x+y+z\ge3\) (do \(\left(2\right)\)), tức \(ab+bc+ca\ge3\) \(\left(3\right)\)
Từ \(\left(1\right);\) \(\left(3\right)\) ta suy ra \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\) \(\left(đpcm\right)\)
Dấu \("="\) xảy ra khi và chỉ khi \(a=b=c=1\)
thông điệp nhỏ :
hãy tích nếu như ko muốn tích
ai tích mình tích lại nh nha