Tìm giá trị nhỏ nhất của : A = \(\frac{2}{2-x}+\frac{1}{x}\) với 0 < x < 2
Cho \(C=\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right):\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a) Rút gọn C
b)Tìm giá trị nguyên của x để C<0
c)với giá trị nào của x thì 1/C đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
Tìm giá trị nhỏ nhất của biểu thức A=\(\frac{2}{1-x}+\frac{1}{x}\) với 0<x<1
Với mọi 0 < x < 1 ta có:
\(A=\frac{2}{1-x}+\frac{1}{x}=\frac{\left(\sqrt{2}\right)^2}{1-x}+\frac{1}{x}\ge\frac{\left(\sqrt{2}+1\right)^2}{1-x+x}=3+2\sqrt{2}\)
Dấu "=" xảy ra <=> \(\frac{\sqrt{2}}{1-x}=\frac{1}{x}=\sqrt{2}+1\Rightarrow x=\frac{1}{\sqrt{2}+1}=\sqrt{2}-1\)
Kết luận:...
cho biểu thức \(A=\frac{^{x^2}-2x+2011}{x^2}\) với x>0
tìm giá trị của x để biểu thức A đạt giá trị nhỏ nhất. tìm giá trị nhỏ nhất đó
bài này ta có thể giải theo 2 cách
ta có A = \(\frac{x^2-2x+2011}{x^2}\)
= \(\frac{x^2}{x^2}\)- \(\frac{2x}{x^2}\)+ \(\frac{2011}{x^2}\)
= 1 - \(\frac{2}{x}\)+ \(\frac{2011}{x^2}\)
đặt \(\frac{1}{x}\)= y ta có
A= 1- 2y + 2011y^2
cách 1 :
A = 2011y^2 - 2y + 1
= 2011 ( y^2 - \(\frac{2}{2011}y\)+ \(\frac{1}{2011}\))
= 2011( y^2 - 2.y.\(\frac{1}{2011}\)+ \(\frac{1}{2011^2}\)- \(\frac{1}{2011^2}\) + \(\frac{1}{2011}\))
= 2011 \(\left(\left(y-\frac{1}{2011}\right)^2\right)+\frac{2010}{2011^2}\)
= 2011\(\left(y-\frac{1}{2011}\right)^2\)+ \(\frac{2010}{2011}\)
vì ( y - \(\frac{1}{2011}\)) 2>=0
=> 2011\(\left(y-\frac{1}{2011}\right)^2\)+ \(\frac{2010}{2011}\)> = \(\frac{2010}{2011}\)
hay A >=\(\frac{2010}{2011}\)
cách 2
A = 2011y^2 - 2y + 1
= ( \(\sqrt{2011y^2}\)) - 2 . \(\sqrt{2011y}\). \(\frac{1}{\sqrt{2011}}\)+ \(\frac{1}{2011}\)+ \(\frac{2010}{2011}\)
= \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)+ \(\frac{2010}{2011}\)
vì \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)> =0
nên \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)+ \(\frac{2010}{2011}\)>= \(\frac{2010}{2011}\)
hay A >= \(\frac{2010}{2011}\)
Tìm giá trị nhỏ nhất của
\(A=\frac{2}{1-x}+\frac{1}{x}\)với\(0< x< 1\)
Áp dụng BĐT Bu-nhi-a-cốp-ski, ta có :
\(\left[\left(\sqrt{\frac{2}{1-x}}\right)^2+\left(\sqrt{\frac{1}{x}}\right)^2\right]\left[\sqrt{1-x}^2+\sqrt{x}^2\right]\ge\left(\sqrt{\frac{2}{1-x}}.\sqrt{1-x}+\sqrt{\frac{1}{x}}.\sqrt{x}\right)^2\)
\(\Rightarrow\left(\frac{2}{1-x}+\frac{1}{x}\right)\left(1-x+x\right)\ge\left(\sqrt{2}+\sqrt{1}\right)^2\Rightarrow A\ge3+2\sqrt{2}\)
Dấu "=" xảy ra khi \(x=\sqrt{2}-1\)
a) Rút gọn rồi tìm giá trị của x để biểu thức: \(\frac{x^2}{x-2}.\left(\frac{x^2+4}{x}-4\right)+3\) có giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
b) Rút gọn rồi tìm giá trị của x để biểu thức: \(\frac{^{x^2}}{x-2}.\left(1-\frac{^{x^2}}{x+2}\right)-\frac{x^2+6x+4}{x}\)có giá trị lớn nhất. Tìm giá trị lớn nhất đo.
Cho \(A=\frac{x^2+x+1}{x^2+x+1}\)
Với x khác -1,x>0
Tìm giá trị nhỏ nhất của A
bạn k lm đc thì thôi đừng nói nhiều nha
Tìm giá trị nhỏ nhất của\(\frac{x^2+2}{x+2}\)với x>0
\(\frac{x^2+2}{x+2}=\frac{x\left(x-1\right)+x+2}{x+2}=\frac{x\left(x-1\right)}{x+2}+1\ge1\left(x>0\right)\)
Dấu "=" xảy ra khi x - 1 = 0 tức là x = 1
Tìm giá trị nhỏ nhất của biểu thức:
\(P=\frac{x^2-x+1}{x^2+x+1}\) Với x > 0
giúp mình với
cho biểu thức A=\(\frac{x^2-2x+2011}{x^2}\)với x>0.Tìm giá trị của x để A đạt giá trị nhỏ nhất.Tìm giá trị nhỏ nhất đó
mình đg cần gấp ạ!!
1 .Cho x > 0 . Tìm giá trị nhỏ nhất của S = \(\frac{x^2+3}{x+1}\)
2 . Tìm giá trị lớn nhất của biểu thức P = \(\frac{2018}{x^2-6x+10}\)
câu 1 x phải là dấu lớn hơn hoặc bằng mới giải được
2. xét x^2- 6x + 10
= X^2 -6x +9 +1
=(x^2 -3 )^2 +1
Nhận xét ( x^2 - 3) ^2 luôn luôn lớn hơn hoặc bằng 0 với moi x thuộc R
=> ( x^2 -3)^2+1 luôn luôn lớn hơn hoặc bằng 1 với mọi x thuộc R
=> \(\frac{2018}{X^2-6x+10}\)luôn luôn bé hơn hoặc bằng 2018 với mọi x thuộc R ( 2018/1)
=> P luôn luôn bé hơn hoặc bằng 2018với mọi x thuộc R
Dấu " =" xảy ra khi ( \(\left(x-3\right)^2\)=0
=> x-3 = 0
=> x=3
Vậy giá tị lớn nhất của P là 1 đạt được khi x=3