Giai phương trình: \(x^2+\frac{x^2}{\left(x+1\right)^2}=3\)
Giai phương trình:
a) \(\left(x-\frac{3}{4}\right)^2+\left(x-\frac{3}{4}\right).\left(x-\frac{1}{2}\right)=0\)
b) \(\frac{1}{x}+2=\left(\frac{1}{x}+2\right).\left(x^2+1\right)\)
a) \(\left(x-\frac{3}{4}\right)^2+\left(x-\frac{3}{4}\right)\cdot\left(x-\frac{1}{2}\right)=0\)
\(\Leftrightarrow\left(x-\frac{3}{4}\right)\left(x-\frac{3}{4}+x-\frac{1}{2}\right)=0\)
\(\Leftrightarrow\left(x-\frac{3}{4}\right)\left(2x-\frac{5}{4}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{3}{4}=0\\2x-\frac{5}{4}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=\frac{5}{8}\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{3}{4};\frac{5}{8}\right\}\)
b) ĐK : x khác 0
\(\frac{1}{x}+2=\left(\frac{1}{x}+2\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{x}+2=0\\1=x^2+1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{x}=-2\\x^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\left(tm\right)\\x=0\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{1}{2}\right\}\)
Giai phương trình:
\(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)=\left(x+4\right)^2\\ \\ \)
Giai phương trình sau:
a) \(\frac{2\left(x-4\right)}{3}+\frac{4\left(x-3\right)-x+1}{8}=\frac{3\left(2x-3\right)}{5}-7\)
b)\(x-\frac{10-7x}{6}+1=\frac{x}{2}+\frac{3\left(x-1\right)+2-x}{9}\)
Giai phương trình : \(\left(\frac{x-1}{x+2}\right)^2-4\left(\frac{x^2-1}{x^2-4}\right)^2+3\left(\frac{x+1}{x-2}\right)^2=0\)0
Ai làm nhanh và đúng nhất thì mình sẽ TICK cho
\(\left(\frac{x-1}{x+2}\right)^2-4\left(\frac{x^2-1}{x^2-4}\right)^2+3\left(\frac{x+1}{x-2}\right)^2=0\left(1\right)\)
\(ĐKXĐ:x\ne\pm2\)
Đặt \(\frac{x-1}{x+2}=a;\frac{x+1}{x-2}=b\)
=> Phương trình (1) <=> \(a^2-4ab+3b^2=0\)
\(\Leftrightarrow a^2-3ab-ab+3b^2=0\)
\(\Leftrightarrow a\left(a-b\right)-3b\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-3b\right)\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-3b\right)\left(a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-3b=0\\a-b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=3b\\a=b\end{cases}}}\)
=> \(b=0;a=0\)
Bạn cùng trường :">
Giai phương trình : \(3\left(\frac{x+2}{x-3}\right)^2+8\left(\frac{x^2-4}{x^2-9}\right)=3\left(\frac{x-2}{x+3}\right)^2\)
AI NHANH THÌ MÌNH TICK CHO
\(ĐKXĐ:x\ne\pm3\)
Đặt \(\frac{x+2}{x-3}=a;\frac{x-2}{x+3}=b\)
Ta có:
\(pt\Leftrightarrow3a^2+8ab=3b^2\)
\(\Leftrightarrow3a^2+8ab-3b^2=0\)
\(\Leftrightarrow\left(3a-b\right)\left(3b+a\right)=0\)
\(\Leftrightarrow3a=b;3b=-a\)
Đến đây bạn thay vào làm nhá,giải như pt bậc 2 thôi
Giai phương trình
\(\frac{x+1}{x-3}\)- \(\frac{1}{x-1}\)= \(\frac{2}{\left(x-1\right)\left(x-3\right)}\)
\(\frac{x+1}{x-3}-\frac{1}{x-1}=\frac{2}{\left(x-1\right)\left(x-3\right)}\left(x\ne1;x\ne3\right)\)
\(\Leftrightarrow\frac{x^2-1}{\left(x-1\right)\left(x-3\right)}-\frac{x-3}{\left(x-1\right)\left(x-3\right)}-\frac{2}{\left(x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{x^2-1-x+3-2}{\left(x-1\right)\left(x-3\right)}=0\)
\(\Rightarrow x^2-x=0\)
\(\Leftrightarrow x\left(x-1\right)=0\)
<=> x=0 hoặc x=1
Vậy x=0; x=1
\(ĐKXĐ:x\ne3;x\ne1\)
\(pt\Leftrightarrow\frac{x^2-1-x+3}{\left(x-3\right)\left(x-1\right)}=\frac{2}{\left(x-1\right)\left(x-3\right)}\)
\(\Leftrightarrow x^2-1-x+3=2\)
\(\Leftrightarrow x^2-x=0\Leftrightarrow x=0\)(vì x khác 1)
Vậy x = 0
hay kím chế sự thông minh của các cậu lại để cho nx tk n g u như t tl :v :))
\(\frac{x+1}{x-3}-\frac{1}{x-1}=\frac{2}{\left(x-1\right)\left(x-3\right)}\left(ĐKXĐ:x\ne1;3\right)\)
\(\left(x+1\right)\left(x-1\right)+3-x=2\)
\(x^2+2-x=2\)
\(x^2-x=0\)
\(x\left(x-1\right)=0\)
\(\Rightarrow x=0\)
Giai phương trình
\(\frac{2x}{x+1}=\frac{-x^2-x-8}{\left(x+1\right)\left(x-4\right)}\)
\(\frac{2x}{x+1}=\frac{-x^2-x-8}{\left(x+1\right)\left(x-4\right)}\Leftrightarrow\frac{2x\left(x-4\right)}{\left(x+1\right)\left(x-4\right)}=\frac{x^2-x+8}{\left(x+1\right)\left(x-4\right)}\)
\(\Leftrightarrow2x^2-8x=x^2-x+8\)
\(\Leftrightarrow x^2-7x-8=0\Leftrightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}\)
E hèm! Thiếu điều kiện kìa em!
Giai hệ phương trình:
\(\hept{\begin{cases}\sqrt{x^2-\left(x+y\right)}=\frac{y}{\sqrt[3]{x-y}}\\2\left(x^2+y^2\right)-3\sqrt{2x-1}=11\end{cases}}\)
Giai hệ phương trình \(\left\{x+y+\frac{1}{x}+\frac{1}{y}=\frac{9}{2}\right\}va\left\{xy+\frac{1}{xy}=\frac{5}{2}\right\}\)
Xét pt thứ 2 ta có
\(xy+\frac{1}{xy}=\frac{5}{2}\)
\(\Leftrightarrow2x^2y^2-5xy+2=0\)
\(\Leftrightarrow\orbr{\begin{cases}xy=2\\xy=\frac{1}{2}\end{cases}}\)
Xét pt 1 ta có
\(x+y+\frac{1}{x}+\frac{1}{y}=\frac{9}{2}\)
\(\Leftrightarrow2\left(x+y\right)+\frac{2\left(x+y\right)}{xy}=9\left(3\right)\)
Thế xy = 2 vào (3) ta được
\(\hept{\begin{cases}3\left(x+y\right)-9=0\\xy=2\end{cases}}\)
\(\Rightarrow\left(x,y\right)=\left(1,2;2,1\right)\)
Thế xy = \(\frac{1}{2}\)vào (3) ta được
\(\hept{\begin{cases}6\left(x+y\right)-9=0\\xy=\frac{1}{2}\end{cases}}\)
\(\Rightarrow\left(x,y\right)=\left(1,\frac{1}{2};\frac{1}{2},1\right)\)
Giải phương trình \(\frac{1}{\left(x^2+5\right)\left(x^2+4\right)}+\frac{1}{\left(x^2+4\right)\left(x^2+3\right)}+\frac{1}{\left(x^2+3\right)\left(x^2+2\right)}+\frac{1}{\left(x^2+2\right)}+\frac{1}{\left(x^2+1\right)}\)
AYUASGSHXHFSGDB HAGGAHAJF