Cho hình chữ nhật ABCD. Gọi H là chân đường vuông góc kẻ từ A đến BD. Lấy điểm E trên DH và điểm K trên BC sao cho DE/DH = CK/CB.
Chứng minh rằng a, tam giác ade ~ tam giác ack
B, tam giác aek ~ tam giác adc
Cho hình chữ nhật ABCD. Gọi H là chân đường vuông góc kẻ từ A đến BD. Lấy điểm E trên DH và điểm K trên BC sao cho DE/DH = CK/CB.
Chứng minh rằng a, tam giác ade ~ tam giác ack
B, tam giác aek ~ tam giác adc
C, góc aek = 90o
Cho hình chữ nhật ABCD. Kẻ AH vuông góc BD tại H. Lấy điểm E thuộc DH, K thuộc BC sao cho DE/DH = CK/CB. CMR :
a, Tam giác ADH đồng dạng tam giác ACB
b, Tam giác ADE đồng dạng ACB
c, Tam giác AEK đồng dạng ADC
d, góc AEK = 90 độ
Mong mọi người giúp đỡ
Cho hình chữ nhật ABCD. Gọi H là chân đường vuông góc kẻ từ A đến BD. Lấy điểm E trên DH và điểm K trên BC sao cho DE/DH = CK/CB.
Chứng minh rằng a, tam giác ade ~ tam giác ack
b, tam giác aek ~ tam giác adc
a) Xét ΔACB vuông tại B và ΔDBC vuông tại C có
AC=DB(hai đường chéo của hình chữ nhật ABCD)
BC chung
Do đó: ΔACB=ΔDBC(cạnh huyền-cạnh góc vuông)
⇒ΔACB∼ΔDBC(hai tam giác bằng nhau là hai tam giác đồng dạng)(1)
Xét ΔDBC vuông tại C và ΔADH vuông tại H có
\(\widehat{DBC}=\widehat{ADH}\)(hai góc so le trong, AD//BC)
Do đó: ΔDBC∼ΔADH(góc nhọn)(2)
Từ (1) và (2) suy ra ΔACB∼ΔADH
⇒\(\frac{BC}{DH}=\frac{AC}{AD}\)
⇒\(\frac{DH}{BC}=\frac{AD}{AC}\)(3)
Ta có: \(\frac{DE}{DH}=\frac{CK}{CB}\)
⇒\(\frac{DE}{CK}=\frac{DH}{BC}\)(4)
Từ (3) và (4) suy ra \(\frac{AD}{AC}=\frac{DE}{CK}\)
Xét ΔADB vuông tại A và ΔBCA vuông tại B có
BD=AC(hai đường chéo của hình chữ nhật ABCD)
AD=BC(hai cạnh đối của hình chữ nhật ABCD)
Do đó: ΔADB=ΔBCA(cạnh huyền-cạnh góc vuông)
⇒\(\widehat{ADB}=\widehat{BCA}\)(hai góc tương ứng)
hay \(\widehat{ADE}=\widehat{ACK}\)
Xét ΔADE và ΔACK có
\(\frac{AD}{AC}=\frac{DE}{CK}\)(cmt)
\(\widehat{ADE}=\widehat{ACK}\)(cmt)
Do đó: ΔADE∼ΔACK(c-g-c)
Cho hình chữ nhật ABCD. Gọi H là chân đường vuông góc kẻ từ A đến BD. Lấy điểm E trên DH và điểm K trên BC sao cho DE/DH = CK/CB.
Chứng minh rằng a, tam giác ade ~ tam giác ack
B, tam giác aek ~ tam giác adc
C, góc aek = 90o
Cho hình chữ nhật ABCD. Gọi H là chân đường vuông góc kẻ từ A đến BD. Lấy điểm E trên DH và điểm K trên BC sao cho D E D H = C K C B . Chứng minh:
a) Δ A D E ∽ Δ A C K ;
b) Δ A E K ∽ Δ A D C ;
c) A E K ^ = 90 0
Cho tam giac ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE a) Chứng minh tam giác ADE là tam giác cân b)Kẻ BH vuông góc với AD Kẻ CK vuông góc AE Chứng minh rằng BH=CK,AH=AK c)Gọi I là giao điểm của BH và CK.TAm giác IBC là tam giác gì? Vì saoe) Khi góc BAC =60độ và BD=CE=BC hãy tính số đo các góc của tam giác ADE và xác định dạng tam giác IBC
Bạn tự vẽ hình nha!
a.
Ta có:
B1 + B2 = 180C1 + C2 = 180mà B1 = C1 (tam giác ABC cân tại A)
=> B2 = C2 (1)
Xét tam giác ADB và tam giác AEC:
AB = AC (tam giác ABC cân tại A)
B2 = C2 (theo 1)
BD = CE (gt)
=> Tam giác ADB = ACE (c.g.c)
=> AD = AE (2 cạnh tương ứng)
=> Tam giác ADE
b.
Xét tam giác AHB vuông tại A và tam giác AKC vuông tại K:
AB = AC (tam giác ABC cân tại A)
A1 = A2 (tam giác ADB = tam giác AEC)
=> Tam giác AHB = Tam giác AKC (cạnh huyền - góc nhọn)
=> BH = CK (2 cạnh tương ứng)
AH = AK (2 cạnh tương ứng)
c.
Xét tam giác HDB vuông tại H và tam giác KEC vuông tại K:
BH = CK (theo câu b)
BD = CE (gt)
=> Tam giác HDB = Tam giác KEC (cạnh huyền - cạnh góc vuông)
Ta có:
DBH = IBC (2 góc đối đỉnh)
KCE = ICB (2 góc đối đỉnh)
mà DBH = KCE (tam giác HDB = tam giác KEC)
=> IBC = ICB
=> Tam giác IBC cân tại I
cho hcn ABCD.gọi H là giác ADE đồng dạng ACK chân đường vuông gọc kẻ từ A đến BD.lấy E thuộc DH,K thuộc BC.DE/DH=CK/CB CH : a)tamb) tam giác AEK đồng dạng ADC c) AEK=90 độ
Cho tam giác ABC. Trên tia đối của tia BC lấy điểm D sao cho BD = AB. Trên tia đối của tia CB lấy điểm E sao cho CE = AC. Gọi H là chân đường vuông góc kể từ B đến AD, K là chân đường vuông góc kẻ từ C đến AE
a) Chứng minh rằng HK song song
với DE
b) Tính HK, biết chu vi tam giác ABC bằng 10 cm
Cho tam giác ABC cân tại A (A>90 độ), trên cạnh BC lấy 2 điểm D và E sao cho BD=DE=EC. kẻ BH vuông góc AD, CK vuông góc AE ( H ∈ AD ,K ∈ AE). BH cắt CK tại G.
a) Chứng minh tam giác ADE cân.
b) Chứng minh BH=CK.
c) Gọi M là trung điểm của BC , chứng minh : A,M,G thẳng hàng.
d) Chững minh :AC>AD.
e) Chứng minh :góc DAE >DAB.