Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lisaki Nene
Xem chi tiết
Lisaki Nene
1 tháng 7 2018 lúc 9:33

Cho mk vt lại câu hỏi nha:

Tìm hai số nguyên dương a và b nhỏ nhất để các biểu thức sau là các phân số tối giản:

\({2 \over a^2+b^2+98};{3 \over a^2+b^2+99};{4 \over a^2+b^2+100};...;{100 \over a^2+b^2+196}\)

Ai nhanh mk k cho

Lisaki Nene
1 tháng 7 2018 lúc 9:43

mk lại vt sai rùi, cho mk vt lại lần nx nha:

Tìm hai số nguyên dương a và b nhỏ nhất để các biểu thức sau là các phân số tối giản:

2/a2+b2+98;3/a2+b2+99;4/a2+b2+100;...;100/a2+b2+196

ai nhanh và đúng nhất mk sẽ k cho nha

PASSIN
Xem chi tiết
Nguyễn Minh Nam
7 tháng 7 2020 lúc 8:45

Mình chịu

Khách vãng lai đã xóa
Nguyễn Việt Hoàng
Xem chi tiết
Nguyễn Minh Đăng
5 tháng 8 2020 lúc 9:00

Làm bừa thôi nhé:)

\(A=\sqrt{a^2+\frac{1}{a^2}}+\sqrt{b^2+\frac{1}{b^2}}\)

\(\ge\sqrt{2\sqrt{a^2.\frac{1}{a^2}}}+\sqrt{2\sqrt{b^2.\frac{1}{b^2}}}\)

\(=\sqrt{2}+\sqrt{2}=2\sqrt{2}\)

Dấu "=" xảy ra khi: \(a=b=1\)

Khách vãng lai đã xóa
Tran Le Khanh Linh
5 tháng 8 2020 lúc 20:57

bổ sung thêm đk a+b=4

áp dụng bđt Bunhiacopxki ta có:

\(\hept{\begin{cases}\sqrt{a^2+\frac{1}{a^2}}=\frac{1}{\sqrt{17}}\sqrt{\left(a^2+\frac{1}{a^2}\right)\cdot\left(4^2+1^2\right)}\ge\frac{1}{\sqrt{17}}\left(4a+\frac{1}{a}\right)\\\sqrt{b^2+\frac{1}{b^2}}=\frac{1}{\sqrt{17}}\sqrt{\left(b^2+\frac{1}{b^2}\right)\left(4^2+1\right)}\ge\frac{1}{\sqrt{17}}\left(4b+\frac{1}{b}\right)\end{cases}}\)

khi đó ta được \(A\ge\frac{1}{\sqrt{17}}\left[4\left(a+b\right)+\left(\frac{1}{a}+\frac{1}{b}\right)\right]\)

ta để sy thấy \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)do đó áp dụng bđt Cauchy vfa giả thiết ta được

\(A\ge\frac{1}{\sqrt{17}}\left[4\left(a+b\right)+\frac{4}{a+b}\right]=\frac{1}{\sqrt{17}}\left[\frac{a+b}{4}+\frac{4}{a+b}+\frac{15\left(a+b\right)}{4}\right]\)\(\ge\frac{1}{\sqrt{17}}\left[2+15\right]=\sqrt{17}\)

dấu đẳng thức xảy ra khi \(\hept{\begin{cases}\frac{a}{4}=\frac{1}{a}\\\frac{b}{4}=\frac{1}{b}\end{cases}\Leftrightarrow a=b=2}\)

Khách vãng lai đã xóa
Nguyễn Việt Hoàng
Xem chi tiết
Minh Thư
Xem chi tiết
Kiệt Nguyễn
27 tháng 12 2019 lúc 17:24

Áp dụng BĐT Svac - xơ:

\(T=\frac{a}{a^2+8bc}+\frac{b}{b^2+8ca}+\frac{c}{c^2+8ab}\)

\(=\frac{a^2}{a^3+8abc}+\frac{b^2}{b^3+8abc}+\frac{c^2}{c^3+8abc}\)\(\ge\frac{\left(a+b+c\right)^2}{a^3+b^3+c^3+24abc}\)

Ta lại có: \(\left(a+b+c\right)^3=a^3+b^3+c^3+\)\(3\left(a+b+c\right)\left(ab+bc+ca\right)-3abc\)

\(\ge a^3+b^3+c^3+27\sqrt[3]{abc}.\sqrt[3]{\left(abc\right)^2}-3abc=\)\(a^3+b^3+c^3+24abc\)

Lúc đó: \(T\ge\frac{1}{a+b+c}=1\)

(Dấu "="\(\Leftrightarrow a=b=c=\frac{1}{3}\))

Khách vãng lai đã xóa
Minh Thư
27 tháng 12 2019 lúc 17:19

Cho tớ sửa đề 

tử của ba cái là mũ 2 lên hết nha

Khách vãng lai đã xóa
Nguyễn Linh Chi
27 tháng 12 2019 lúc 17:28

\(T=\frac{a^2}{a^2+8bc}+\frac{b^2}{b^2+8ca}+\frac{c^2}{c^2+8ab}\)

\(\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ac+6\left(ab+bc+ac\right)}\)

\(\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+6.\frac{\left(a+b+c\right)}{3}^2}\)

\(=\frac{1}{1+\frac{6}{3}}=\frac{1}{3}\)

Dấu "=" xảy ra <=> a = b = c = 1/3 

Khách vãng lai đã xóa
Phạm Ngọc Ánh
Xem chi tiết
Lê Minh Đức
Xem chi tiết
Thiên An
3 tháng 4 2017 lúc 20:22

Do a, b, c dương áp dụng bất đẳng thức Cô-si ta có:

\(\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}\ge2\sqrt{\frac{b^2c^2}{a^2}.\frac{a^2c^2}{b^2}}=2c^2\)(1)

Tương tự \(\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}\ge2a^2\) (2)  và \(\frac{b^2c^2}{a^2}+\frac{a^2b^2}{c^2}\ge2b^2\) (3)

Cộng (1), (2), (3) vế theo vế rồi chia 2 vế cho 2 ta được \(\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}\ge a^2+b^2+c^2=1\)

Ta có \(P^2=\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}+2\left(\frac{bc}{a}.\frac{ac}{b}+\frac{ac}{b}.\frac{ab}{c}+\frac{bc}{a}.\frac{ab}{c}\right)\)

\(P^2=\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}+2\left(a^2+b^2+c^2\right)=\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}+2\ge1+2=3\)

Vậy \(P_{min}=\sqrt{3}\) \(\Leftrightarrow\) \(a=b=c=\frac{\sqrt{3}}{3}\)

Lê Minh Đức
3 tháng 4 2017 lúc 21:10

Kamishamunita

Tuyết Phạm Thị
Xem chi tiết
natsu dragneel
Xem chi tiết
Ngọc//
3 tháng 4 2021 lúc 20:44

Vì ( a - b )\(\ge\)\(\forall\)a,b \(\Rightarrow a^2+b^2\ge2ab\). Mà ab = 4 \(\Rightarrow a^2+b^2\ge8\)

\(\Rightarrow\frac{\left(a+b-2\right)\left(a^2+b^2\right)}{a+b}\ge\frac{\left(a+b-2\right).8}{a-b}\)

Đặt t = a + b \(\Rightarrow t\ge4\)( Do \(a+b\ge2\sqrt{ab}=4\))

\(\frac{\left(t-2\right).8}{t}=\frac{8t-16}{t}=8-\frac{16}{t}\)

Vì \(t\ge4\Rightarrow\frac{16}{t}\le\frac{16}{4}\Rightarrow-\frac{16}{t}\ge-4\Rightarrow\left(8-\frac{16}{t}\right)\ge8-4=4\)

\(\Rightarrow\frac{\left(a+b-2\right)\left(a^2+b^2\right)}{a+b}\ge4\)Dấu '' = '' xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b\\a,b=4\end{cases}\Leftrightarrow a=b=2}\)

Vậy \(\frac{\left(a+b-2\right)\left(a^2+b^2\right)}{a+b}\)min \(\Leftrightarrow a=b=2\)

Khách vãng lai đã xóa