Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Ngọc Anh
Xem chi tiết
Nguyệt Minh
Xem chi tiết
Nguyễn Tuấn Tài
15 tháng 10 2015 lúc 11:15

Gọi ƯCLN(a; b) là d. Theo đề bài, ta có:

n chia hết cho d => 2n chia hết cho d

2n+5 chia hết cho d

=> 2n+5-2n chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN(a; b) = 1

=> a và b nguyên tố cùng nhau (đpcm)

tick nhé bạn

Nguyệt Minh
Xem chi tiết
Đỗ Nga Linh
16 tháng 10 2015 lúc 21:13

a) Đặt 2 số đấy là 2k+1 và 2k+3 và UWCLN của chúng là d . Ta có :

2k+1 chia hết cho d ; 2k+3 chia hết cho d => 2k+3 -(2k+1) chia hết cho d hay 2 chia hết cho d

d ko thể bằng 2 vì d là ước của 2 số lẻ => d=1 => 2 số lẻ liên tiếp nguyên tố cùng nhau .

b) Gọi ƯCLN của 2n+5 và 3n+7n là d . Ta có

2n+5 chia hết cho d => 6n+10 chia hết cho d

3n+7 chia hết cho d => 6n+ 14 chia hết cho  d

=> 6n+14 -(6n+10) chia hết cho d hay 4 chia hết cho d mà d ko thể bằng 2 hay 4 vì d là ước của 2n+5 ( số lẻ ) => d=1

=> 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau .

 

Nguyễn Phương Oanh
Xem chi tiết
Đỗ Lê Tú Linh
10 tháng 12 2015 lúc 21:29

a)Gọi ƯCLN(2n+5;3n+7)=d

Ta có: 2n+5 chia hết cho d

3(2n+5) chia hết cho d

6n+15 chia hết cho d

có 3n+7 chia hết cho d

2(3n+7) chia hết cho d

6n+14 chia hết cho d

=>6n+15-(6n+14) chia hết cho d

1 chia hết cho d hay d=1

Vậy ƯCLN(2n+5;3n+7) hay 2n+5 và 3n+7 là 2 số tự nhiên cùng nhau

b)Gọi ƯCLN(8n+10;6n+7)=d

Ta có: 8n+10 chia hết cho d

=>3(8n+10) chia hết cho d

24n+30 chia hết cho d

có 6n+7 chia hết cho d

4(6n+7) chia hết cho d

24n+28 chia hết cho d

=>24n+30-(24n+28) chia hết cho d

........... tương tự câu a

c)Gọi ƯCLN(21n+5;14n+3)=d

Ta có: 21n+5 chia hết cho d

2(21n+5) chia hết cho d

42n+10 chia hết cho d

có 14n+3 chia hết cho d

3(14n+3) chia hết cho d

42n+9 chia hết cho d

=>42n+10-(42n+9) chia hết cho d

..................... tương tự câu a

Leona
Xem chi tiết
soyeon_Tiểubàng giải
8 tháng 10 2016 lúc 17:26

Gọi d = ƯCLN(n + 5; n + 6) (d \(\in\) N*)

\(\Rightarrow\begin{cases}n+5⋮d\\n+6⋮d\end{cases}\)\(\Rightarrow\left(n+6\right)-\left(n+5\right)⋮d\)

\(\Rightarrow1⋮d\)

Mà \(d\in\) N* => d = 1

=> ƯCLN(n + 5; n + 6) = 1

=> n + 5 và n + 6 là 2 số nguyên tố cùng nhau (đpcm)

soyeon_Tiểubàng giải
9 tháng 10 2016 lúc 10:26

c) Gọi d = ƯCLN(16n + 5; 24n + 7) (d \(\in\) N*)

\(\Rightarrow\begin{cases}16n+5⋮d\\24n+7⋮d\end{cases}\)\(\Rightarrow\begin{cases}3.\left(16n+5\right)⋮d\\2.\left(24n+7\right)⋮d\end{cases}\)\(\Rightarrow\begin{cases}48n+15⋮d\\48n+14⋮d\end{cases}\)

\(\Rightarrow\left(48n+15\right)-\left(48n+14\right)⋮d\)

\(\Rightarrow1⋮d\)

Mà d \(\in\) N* => d = 1

=> ƯCLN(16n + 5; 24n + 7) = 1

=> 16n + 5 và 24n + 7 là 2 số nguyên tố cùng nhau (đpcm)

Đỗ Đại Cường
Xem chi tiết
Nguyễn Gia Khánh
10 tháng 7 2023 lúc 20:41

Gọi UWCNL(2n+3,2n+2) là d ( d khác 0 )

=> \(2n+3⋮d;2n+2⋮d\) 

=> \(\left(2n+3\right)-\left(2n+2\right)⋮d\) 

=> \(1⋮d\) 

=> \(d=1\) 

     Vậy 2n+3 và 2n+2 là 2 số nguyên tố cùng nhau

CHU THI LINH
Xem chi tiết
Vũ Ngô Quỳnh Anh
Xem chi tiết
soyeon_Tiểu bàng giải
14 tháng 7 2016 lúc 15:13

a) Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)

=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d

=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d

=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d

=> (6n + 15) - (6n + 14) chia hết cho d

=> 6n + 15 - 6n - 14 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(2n+5; 3n+7) = 1

=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)

Câu b lm tương tự

Boy 9xPronine
14 tháng 7 2016 lúc 15:36

 Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)

=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d

=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d

=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d

=> (6n + 15) - (6n + 14) chia hết cho d

=> 6n + 15 - 6n - 14 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(2n+5; 3n+7) = 1

=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)

Câu b lm tương tự

Boy 9xPronine
14 tháng 7 2016 lúc 15:36

 Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)

=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d

=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d

=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d

=> (6n + 15) - (6n + 14) chia hết cho d

=> 6n + 15 - 6n - 14 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(2n+5; 3n+7) = 1

=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)

Câu b lm tương tự

BÙI BẢO KHÁNH
Xem chi tiết
Lê Song Phương
20 tháng 10 2023 lúc 20:40

Mình mẫu đầu với cuối nhé:

a)  Đặt \(ƯCLN\left(3n+4,3n+7\right)=d\)  

\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\3n+7⋮d\end{matrix}\right.\)

\(\Rightarrow\left(3n+7\right)-\left(3n+4\right)⋮d\)

\(\Rightarrow3⋮d\)

 \(\Rightarrow d\in\left\{1,3\right\}\)

Nhưng do \(3n+4,3n+7⋮̸3\) nên \(d\ne3\Rightarrow d=1\)

Vậy \(ƯCLN\left(3n+4,3n+7\right)=1\) hay \(3n+4,3n+7\) nguyên tố cùng nhau.

 e) \(ƯCLN\left(2n+3,3n+5\right)=d\)

 \(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)

Vậy \(ƯCLN\left(2n+3,3n+5\right)=1\), ta có đpcm.