Gọi 2n+3 và 3n+1 là 2 số ko nguyên tố cùng nhau. Tìm ƯCLN(2n+3;3n+1)
1/ Chứng minh 2n+5 và 3n+7 nguyên tố cùng nhau.
2/ Tìm 2 số tự nhiên biết tích của chúng là 8748 và ƯCLN của chúng bằng 27
3/ Tìm ƯC của n+3 và 2n+5
1/2n+5va3n+7
goi UCLL(2n+5va3n+7)la d ta co
2n+5 chia het d3n+7 chia het d(2n+5)/(3n+7)chia het d3.(2n+5)/ 2.(3n+7)chia het d(6n+15)/(6n+14)chia het d1chia het dd=1.vay UCLN(2N+5)/(3N+7)=1NGUYEN TO CUNG NHAU
3/ Gọi d là ước chung của n + 3 và 2n + 5
Suy ra: 2(n + 3) - (2n + 5) chia hết cho d
2n + 6 - 2n - 5 = 1 chia hết cho d nên d = 1
Vậy UC(n + 3, 2n + 5) = 1
Biết a,b không phải hai số nguyên tố cùng nhau. a = 2n + 3 ; b = 3n+ 1. Tìm a,b và ƯCLN(a,b) = ?
biết ab là 2 số tự nhiên không nguyên tố cùng nhau thỏa mãn a = 2n + 3 ;b= 3n + 1 ƯCLN(a;b) là
1.Tìm số tự nhiên n để:
a, 2n+1 và 7n+2 là 2 số nguyên tố cùng nhau.
b,9n+24 và 3n+4 là 2 số nguyên tố cùng nhau.
2.Chứng minh rằng 2n+1 và 3n+1 (n là số tự nhiên) là 2 số nguyên tố cùng nhau.
\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)
\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)
Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3
Giả sử: 2n+1 chia hết cho 3
=> 2n+1-3 chia hết cho 3
=> 2n-2 chia hết cho 3
=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3
Giả sử: 7n+2 chia hết cho 3
=> 7n+2-9 chia hết cho 3
=>.........
Vậy với n khác 3k+1;3k+2 thì thỏa mãn
Chứng minh rằng:
a) 3n+7 và 5n+12 là 2 số nguyên tố cùng nhau
b) 2n+1 và 2n+3 là 2 số nguyên tố cùng nhau
a) Gọi UCLN \(3n+7\)và \(5n+12\)là \(d\)
\(\Rightarrow\left(3n+7\right)⋮d\)và \(\left(5n+12\right)⋮d\)
Xét 2 biểu thức :
\(\Rightarrow\left(3n+7\right).5⋮d\Rightarrow15n+35⋮d\)
\(\Rightarrow\left(5n+12\right).3⋮d\Rightarrow15n+36⋮d\)
\(\Rightarrow\left(15n+37-15n-36\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow3n+7;5n+12\)nguyên tố cùng nhau.
n+1 và 2n+3 là hai số nguyên tố cùng nhau (n thuộc N*)
Tìm ƯCLN (n+1 ; 2n+3)
Tìm ƯCLN(a,b) Biết a và b không nguyên tố cùng nhau và
a = 2n+3
b = 3n+1
Bài1: tìm a,b a-b=48 và ƯCLN ( a ,b) = 20 Bài 2 A)Chứng minh 5n+5 và 3n+1 là 2 sốc nguyên tố cùng nhau B) tìm ƯCLN ( 2n-1;9n+4)
Bài 1:
Vì ƯCLN $(a,b)=20$ nên $a\vdots 20; b\vdots 20$
$\Rightarrow a-b\vdots 20$ hay $48\vdots 20$ (vô lý)
Do đó không tồn tại $a,b$ thỏa mãn điều kiện đề bài.
Bài 2:
a) Đề sai. Bạn cho $n=3$ thì $5n+5=20, 3n+1=10$. Hai số này có ƯCLN là $10$ nên không nguyên tố cùng nhau.
b) Gọi ƯCLN của $2n-1$ và $9n+4$ là $d$. Khi đó:
\(\left\{\begin{matrix} 2n-1\vdots d\\ 9n+4\vdots d\end{matrix}\right.\Rightarrow \left\{\begin{matrix} 18n-9\vdots d\\ 18n+8\vdots d\end{matrix}\right.\)
\(\Rightarrow (18n+8)-(18n-9)\vdots d\) hay $17\vdots d$
$\Rightarrow d=1$ hoặc $17$
CMR: 3n+11 và 3n+2 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n. Tìm số tự nhiên n biết:
a, n+15 ≤ n-6
b, 2n+15 ⋮ 2n+3
c, 6n+9 ⋮ 2n+1