Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
BNTD
Xem chi tiết
Nguyễn Thị Hoài An
Xem chi tiết
đỗ thị lan anh
29 tháng 7 2016 lúc 19:55

bài 1 

A(x)=\(x^{99}-100x^{98}+100x^{97}-100x^{96}+...+100x+1\)

      = \(x^{99}-\left(99+1\right)x^{98}+\left(99+1\right)x^{97}-\left(99+1\right)x^{96}+...+\left(99+1\right)x-1\)

thay 99=x ta được:

A(x)=\(x^{99}-\left(x+1\right)x^{98}+\left(x+1\right)x^{97}-\left(x+1\right)x^{96}+...+\left(x+1\right)x-1\)

      = \(x^{99}-x^{99}-x^{98}+x^{98}+x^{97}-x^{97}-x^{96}+...+x^2+x-1\)

      =x-1

thay x=99 vào đa thức A(x) ta được :

A(99)=99-1

         =98

vậy tại x=99 thì giá trị của A(x)=98

bài 2:

tại x=1 thay vào đa thức P(x) ta được :

P(1)=\(100.1^{100}+99.1^{99}+...+2.1^2+1\)

       = 100+99+...+2+1

       =5050

vậy tại x=1 thì giá trị của P(x)=5050

quynh do
Xem chi tiết
chinh dang
30 tháng 4 2017 lúc 9:38

ban xem lai thu de bai di co le de bai da bi sai do ban

Nguyễn Thị Thu
30 tháng 4 2017 lúc 11:25

Đề phải là tính P(99) mới đúng bn ạ

Cô gái đanh đá
Xem chi tiết
Nguyễn Thị Bích Ngọc
2 tháng 7 2019 lúc 12:04

Câu 2 tham khảo tại

Câu hỏi của Hang Le - Toán lớp 7 | Học trực tuyến

Học tốt!!!!

Momo
8 tháng 8 2019 lúc 12:39

tên mày như cái lông lồn ý, đổi tên đi con

Darlingg🥝
8 tháng 8 2019 lúc 16:17

Mk có ý kiến giống thoi

Kết quả tìm kiếm | Học trực tuyến - H.vn

Mk tên ai l** l**n????

Nguyễn Thị Bích Thảo
Xem chi tiết
Lê Tài Bảo Châu
22 tháng 8 2019 lúc 18:28

\(p\left(x\right)=x^{99}-100x^{98}+100x^{97}-....+100x-1\)

Ta có: \(x=99\Rightarrow x+1=100\)

\(\Rightarrow p\left(99\right)=x^{99}-\left(x+1\right)x^{98}+\left(x+1\right)x^{97}-...+\left(x+1\right)x-1\)

\(=x^{99}-x^{99}-x^{98}+x^{98}+x^{97}-...+x^2+x-1\)

\(=x-1\)

\(=99-1\)

\(=98\)

p(x)=x^99-100x^98+100x^97-...+100x-1

vì x=99=>x+1=100=>p(99)=x^99-(x+1)x^98+(x+1)x^97-...+(x+1)x-1

=x^99-x^99-x^98+x^98+x^97-...+x^2+x-1

=x-1

=99-1

=98

Nguyễn Thanh Tín
Xem chi tiết
Trần Tiến Thành
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 9 lúc 22:42

Do x=99 nên \(x-99=0\)

Ta có:

\(P=x^{100}-100x^{99}+100x^{98}-100x^{97}+\cdots+100x^2-100x+2124\)

\(=\left(x^{100}-99x^{99}\right)-\left(x^{99}-99x^{98}\right)+\cdots+\left(x^2-99x\right)-\left(x-99\right)+2025\)

\(=x^{99}\left(x-99\right)-x^{98}\left(x-99\right)+\cdots+x\left(x-99\right)-\left(x-99\right)+2025\)

\(=x^{99}.0-x^{98}.0+\cdots+x.0-0+2025\)

\(=0+0+\cdots+0+2025=2025\)

Đề bài:

\(P = x^{100} - 100 x^{99} + 100 x^{98} - 100 x^{97} + \hdots - 100 x + 2124\)

với \(x = 99\). Tính giá trị \(P\).

Bước 1: Phân tích biểu thức

Biểu thức gồm:

\(x^{100}\)Các số hạng có dạng \(\pm 100 x^{k}\) với \(k = 99 , 98 , 97 , . . . , 1\)Hằng số \(2124\)

Nhìn kỹ, các số hạng từ \(x^{99}\) đến \(x\) đều có hệ số \(- 100\) hoặc \(+ 100\) xen kẽ dấu âm dương.

Bước 2: Viết lại biểu thức rõ ràng hơn

Ta có thể tách biểu thức như sau:

\(P = x^{100} + \sum_{k = 99 , 97 , 95 , . . .}^{1} 100 x^{k} - \sum_{k = 99 , 98 , 96 , 94 , . . .}^{2} 100 x^{k} + 2124\)

Nhưng câu hỏi có dấu trừ \(- 100 x^{99} + 100 x^{98} - 100 x^{97} + \hdots\), tức dấu thay đổi từng số hạng.

Cụ thể:

Số hạng thứ 1: \(x^{100}\)Số hạng thứ 2: \(- 100 x^{99}\)Số hạng thứ 3: \(+ 100 x^{98}\)Số hạng thứ 4: \(- 100 x^{97}\)... cứ thế tiếp tục xen kẽ dấu âm dương cho đến \(- 100 x\)Cuối cùng cộng \(2124\)Bước 3: Tách tổng thành hai phần:

Gọi

\(S = \sum_{k = 1}^{99} \left(\right. - 1 \left.\right)^{k} 100 x^{100 - k}\)

Ta có:

\(P = x^{100} + S + 2124\)

Bước 4: Viết \(S\) như sau:

\(S = 100 \sum_{k = 1}^{99} \left(\right. - 1 \left.\right)^{k} x^{100 - k} = 100 \sum_{m = 1}^{99} \left(\right. - 1 \left.\right)^{m} x^{100 - m}\)

Thay đổi chỉ số:
Gọi \(j = 100 - m\), khi \(m = 1 \Rightarrow j = 99\), khi \(m = 99 \Rightarrow j = 1\)

Vậy:

\(S = 100 \sum_{j = 1}^{99} \left(\right. - 1 \left.\right)^{100 - j} x^{j}\)

Nhưng \(\left(\right. - 1 \left.\right)^{100 - j} = \left(\right. - 1 \left.\right)^{100} \cdot \left(\right. - 1 \left.\right)^{- j} = 1 \cdot \left(\right. - 1 \left.\right)^{- j} = \left(\right. - 1 \left.\right)^{j}\) (vì \(\left(\right. - 1 \left.\right)^{- j} = \left(\right. - 1 \left.\right)^{j}\)).

Nên:

\(S = 100 \sum_{j = 1}^{99} \left(\right. - 1 \left.\right)^{j} x^{j}\)

Bước 5: Thay \(x = 99\):

\(S = 100 \sum_{j = 1}^{99} \left(\right. - 1 \left.\right)^{j} 99^{j}\)

Bước 6: Tính tổng:

\(\sum_{j = 1}^{99} \left(\right. - 1 \left.\right)^{j} 99^{j} = - 99 + 99^{2} - 99^{3} + 99^{4} - \hdots + \left(\right. - 1 \left.\right)^{99} 99^{99}\)

Bước 7: Nhận xét

Đây là tổng của cấp số nhân với số hạng đầu:

\(a_{1} = - 99\)

Tỷ số công:

\(r = - 99\)

Số hạng tổng:

\(n = 99\)

Tổng của cấp số nhân:

\(S_{n} = a_{1} \frac{1 - r^{n}}{1 - r} = \left(\right. - 99 \left.\right) \times \frac{1 - \left(\right. - 99 \left.\right)^{99}}{1 - \left(\right. - 99 \left.\right)} = \left(\right. - 99 \left.\right) \times \frac{1 - \left(\right. - 99 \left.\right)^{99}}{1 + 99} = \left(\right. - 99 \left.\right) \times \frac{1 - \left(\right. - 99 \left.\right)^{99}}{100}\)

Bước 8: Tính \(S\):

\(S = 100 \times S_{n} = 100 \times \left(\right. \left(\right. - 99 \left.\right) \times \frac{1 - \left(\right. - 99 \left.\right)^{99}}{100} \left.\right) = - 99 \left(\right. 1 - \left(\right. - 99 \left.\right)^{99} \left.\right)\)

Bước 9: Tính \(P\):

\(P = x^{100} + S + 2124 = 99^{100} - 99 \left(\right. 1 - \left(\right. - 99 \left.\right)^{99} \left.\right) + 2124\)

Bước 10: Chú ý về dấu lũy thừa \(\left(\right. - 99 \left.\right)^{99}\):

\(\left(\right. - 99 \left.\right)^{99} = - \left(\right. 99 \left.\right)^{99}\)

Vậy:

\(P = 99^{100} - 99 \left(\right. 1 - \left(\right. - \left(\right. 99 \left.\right)^{99} \left.\right) \left.\right) + 2124 = 99^{100} - 99 \left(\right. 1 + 99^{99} \left.\right) + 2124\)

Bước 11: Phân tích thêm

\(P = 99^{100} - 99 - 99 \times 99^{99} + 2124 = 99^{100} - 99 \times 99^{99} - 99 + 2124\)

Bước 12: Nhận xét

Lưu ý:

\(99^{100} = 99 \times 99^{99}\)

Nên:

\(P = \left(\right. 99 \times 99^{99} \left.\right) - 99 \times 99^{99} - 99 + 2124 = 0 - 99 + 2124 = 2124 - 99 = \boxed{2025}\)

Kết luận:

\(\boxed{P = 2025}\)

Tham khảo

Hhh
Xem chi tiết
Minh Triều
14 tháng 7 2015 lúc 22:10

x=99

=>x+1=100

thay x+1=100 và 99=x vào B ta được:

x99-(x+1).x98+(x+1).x97-(x+1).x96+...+(x+1).x-1

=x99-x99-x98+x98+x97-x97-x96+...+x2+x-1

=x-1

=99-1

=98

Vậy B=98

Le Thi Khanh Huyen
14 tháng 7 2015 lúc 22:13

trời                

Ngô Hùng Cường
23 tháng 6 2016 lúc 16:05

Dễ quá.

Nguyễn Xuân Tịnh
Xem chi tiết
Nguyễn Huệ Lam
2 tháng 7 2018 lúc 8:39

\(P\left(x\right)=\left(x^{99}-99x^{98}\right)-\left(x^{98}-99x^{97}\right)+\left(x^{97}-99x^{96}\right)-...-\left(x^2-99x\right)+x-1\)

             \(=\left(x-99\right)\left(x^{98}-x^{97}+x^{96}-...+x^2-x\right)+x-1\)

\(P\left(99\right)=\left(99-99\right)\left(99^{98}-99^{97}+99^{96}-...+99^2-99\right)+99-1=98\)

✓ ℍɠŞ_ŦƦùM $₦G ✓
3 tháng 7 2018 lúc 12:05

Ta có : x = 99 

=> 100 = x + 1 

Ta có : P(99) = x99 - (x + 1)x98 + (x + 1)x97 - (x + 1)x96 + ..... + (x + 1)x  - 1

                     = x99 - x99 - x98 + x98 + x97 - x97 - x96 + .... + x2 + x - 1 

                     = x - 1 

                    = 99 - 1 = 98 

nguyen thephong
3 tháng 7 2018 lúc 16:53

mk ko biết lm