Tìm số tự nhiên có hai chữ số, biết rằng chữ số hàng chục kém chữ số hàng đơn vị là 5; tổng bình phương các chữ số của nó hơn 35 đơn vị
tìm một số tự nhiên có hai chữ số biết rằng số đó có chữ số hàng đơn vị kém chữ số hàng chục là 7 đơn vị đồng thời số đó bằng bình phương của tổng hai chữ số của nó
tìm một số tự nhiên có hai chữ số biết rằng số đó có chữ số hàng đơn vị kém chữ số hàng chục là 7 đơn vị,đồng thời số đó bằng bình phương của tổng hai chữ số của nó
Gọi số cần tìm là ab
Theo đề, ta có: a-b=7 và 10a+b=(a+b)^2
=>a=7+b và 10(b+7)+b=(2b+7)^2
=>4b^2+28b+49-11b-70=0 và a=b+7
=>b=1 và a=8
tìm một số tự nhiên có hai chữ số biết rằng số đó có chữ số hàng đơn vị kém chữ số hàng chục là 7 đơn vị,đồng thời số đó bằng bình phương của tổng hai chữ số của nó
Gọi số tự nhiên cần tìm là \(\overline{ab}\left(a,b\in N;a\ne0\right)\)
Ta có \(b=a-7\)
Mặt khác: \(\overline{ab}=\left(a+b\right)^2\Rightarrow10a+b=\left(a+a-7\right)^2\)
\(\Rightarrow11a-7=\left(2a-7\right)^2\Rightarrow11a-7=4a^2-28a+49\)
\(\Rightarrow4a^2-39a+56=0\Rightarrow\left[{}\begin{matrix}a=1,75\left(L\right)\\a=8\left(TM\right)\end{matrix}\right.\)
Vậy số cần tìm là 81.
Tìm số tự nhiên có ba chữ số biết chữ số hàng trăm gấp hai lần chữ số hàng đơn vị, chữ số hàng chục kém ba lần chữ số hàng đơn vị. Số cần tìm là ?
Tìm số tự nhiên có 3 chữ số biết chữ số hàng trăm gấp hai lần chữ số hàng đơn vị , chữ số hàng chục kém 3 lần chữ số hàng đơn vị . Số cần tìm là ?
1/- Tìm một số tự nhiên có 3 chữ số biết chữ số hàng trăm gấp hai lần chữ số hàng đơn vị , chữ số hàng chục kém ba lần chữ số hàng đơn vị . Số cần tìm là :
tìm số tự nhiên có 3 chữ số biết rằng chữ số hàng trăm gấp 2 lần chữ sô hàng đơn vị , chữ số hàng chục kém 3 lần chữ số hàng đơn vị
Bài 1 : Tìm Số tự nhiên có 3 chữ số , Biết rằng chữ số hàng trăm kém chữ số hàng chục 2 đơn vị , nếu đổi chỗ chữ số hàng chục và chữ số hàng trăm thì đc só mới lớn hơn số phải tìm là 495 đơn vị
Bài 1 : Tìm một số tự nhiên có hai chữ số, biết rằng nếu viết chữ số 0 xen giữa chữ số hàng chục và hàng đơn vị của số đó ta được số lớn gấp 10 lần số đã cho, nếu viết thêm chữ số 1 vào bên trái số vừa nhận được thì số đó lại tăng lên 3 lần.
Bài 2 : Khi xóa bỏ chữ số 5 ở hàng đơn vị của một số tự nhiên ta được số mới kém số ban đầu 320 đơn vị. Tìm số đã cho.
Bài 3 : Tìm số có bốn chữ số biết rằng nếu xóa bỏ hai chữ số 1 ở hàng chục và chữ số 8 ở hàng đơn vị của số đó ta được số mới kém số ban đầu 2889 đơn vị.
Bài 4 : Tìm một số có ba chữ số biết rằng nếu xóa đi chữ số 0 ở tận cùng bên phải số đó ta được số mới ( có hai chữ số ). Tổng hai số đó là 990.
Bài 5 : Cho một số có ba chữ số, chữ số hàng đơn vị là 3. Nếu xóa chữ số 3 đó ta được số mới kém số phải tìm là 408 đơn vị. Tìm số có ba chữ số ban đầu.
Bài 6 : Tổng hai số là 623. Số lớn có hàng đơn vị là 7. Nếu xóa chữ số 7 của số lớn ta được số bé. Tìm hai số đó.
Cho số tự nhiên có hai chữ số. Biết chữ số hàng chục lớn hơn chữ số hàng đơn vị là 5, nếu viết chữ số 0 vào giữa số hàng chục và chữ số hàng đơn vị thì ta được số tự nhiên mới lớn hơn số cũ 630 đơn vị. Tìm số tự nhiên đó.
Gọi số cần tìm là ab ( có gạch ngang trên đầu)
Theo bài ra ta có: a - b =5 (1)
nếu viết xen chữ số 0 vào giữa số hàng chục và hàng đơn vị thì số mới là: a0b ( có gạch ngang trên đầu)
=> a0b - ab = 630
=> 100a + 0 + b - 10a - b = 630
=> 90a = 630
=> a = 7
Thay a = 7 vào (1) ta đc b=2
Vậy số cần tìm là 72
học tốt
Gọi số cần tìm là ab, ta có:
ab + 630 = a0b
a x 10 + b + 630 = a x 100 + b
b + 630 - b = a x 100 - a x 10
630 = a x 90 \(\Rightarrow a=7\)
\(\Rightarrow b=7-5=2\)
Vậy số cần tìm là 72.
Gọi \(a\)là chữ số hàng chục, \(b\)là chữ số hàng đơn vị.
Điều kiện \(0< a\le9;0\le b\le9\)và \(a,b\inℕ\)
Khi đó số tự nhiên cần tìm là \(\overline{ab}\)
Vì chữ số hàng chục lớn hơn chữ số hàng đơn vị là \(5\)nên ta có phương trình : \(a-b=5\)\(\left(1\right)\)
Viết chữ số \(0\)vào giữa số hàng chục và chữ số hàng đơn vị, ta được chữ số mới là \(\overline{a0b}\)
Vì số mới lớn hơn số cũ \(630\)đơn vị nên ta có phương trình : \(\overline{a0b}-\overline{ab}=630\)\(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)ta có hệ phương trình \(\hept{\begin{cases}a-b=5\\\overline{a0b}-\overline{ab}=630\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a-b=5\\\left(100a+b\right)-\left(10a+b\right)=630\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a-b=5\\90a=630\end{cases}\Leftrightarrow\hept{\begin{cases}a-b=5\\a=7\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}b=2\\a=7\end{cases}}\)(thỏa mãn)
Vậy số cần tìm là \(72\)