Tìm giá trị nhỏ nhất của M = \(\frac{x}{\left(x+10\right)^2}\)
Cho 1 < x < 2. Tìm giá trị nhỏ nhất của biểu thức: \(M=\frac{1}{\left(x-1\right)\left(2-x\right)}+\frac{1}{\left(x-1\right)^2}+\frac{1}{\left(2-x^2\right)}\)
Sửa lại đề: \(M=\frac{1}{\left(x-1\right)\left(2-x\right)}+\frac{1}{\left(x-1\right)^2}+\frac{1}{\left(2-x\right)^2}\)
\(M=\frac{1}{\left(x-1\right)\left(2-x\right)}+\frac{1}{\left(x-1\right)^2}+\frac{1}{\left(2-x\right)^2}\ge3\sqrt[3]{\frac{1}{\left(x-1\right)^3\left(2-x\right)^3}}=\frac{3}{\left(x-1\right)\left(2-x\right)}\)
\(=\frac{-3}{x^2-3x+2}=\frac{-3}{\left(x^2-3x+\frac{9}{4}\right)-\frac{1}{4}}=\frac{-3}{\left(x-\frac{3}{2}\right)^2-\frac{1}{4}}\ge\frac{-3}{-\frac{1}{4}}=12\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{1}{\left(x-1\right)^2}=\frac{1}{\left(x-1\right)\left(2-x\right)}=\frac{1}{\left(2-x\right)^2}\\\left(x-\frac{3}{2}\right)^2=0\end{cases}\Leftrightarrow x=\frac{3}{2}}\)
...
Xét biểu thức A=\(\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4+\frac{1-x^4}{1+x^2}\right)\\ \)
a) Rút gọn M
b)Tìm x để M đạt giá trị nhỏ nhất và tìm giá trị nhỏ nhất đó
a
\(ĐKXĐ:x\in R\)
\(A=\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4+\frac{1-x^4}{1+x^2}\right)\)
\(A=\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4-x^2+1\right)\)
\(=\frac{\left(x^2-1\right)\left(x^4-x^2+1\right)}{x^4-x^2+1}-\frac{x^4-x^2+1}{x^2+1}\)
\(=x^2-1-\frac{x^4-x^2+1}{x^2+1}\)
\(=-1+\frac{x^4+x^2-x^4+x^2+1}{x^2+1}\)
\(=\frac{2x^2+1}{x^2+1}-1=\frac{2x^2+1-x^2-1}{x^2+1}=\frac{x^2}{x^2+1}\)
b
Xét \(x>0\Rightarrow M>0\)
Xét \(x=0\Rightarrow M=0\)
Xét \(x< 0\Rightarrow M>0\)
Vậy \(M_{min}=0\) tại \(x=0\)
Tìm giá trị nhỏ nhất của biểu thức
\(Q=\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1-x^2y^2\right)^2\)
tìm giá trị nhỏ nhất của \(C=\frac{9}{10}+\left|x^2+\frac{1}{10}\right|\)
Vì \(|x^2+\frac{1}{10}|\ge0\)\(\forall x\)
\(\Rightarrow\frac{9}{10}+|x^2+\frac{1}{10}|\ge\frac{9}{10}\)\(\forall x\)
hay \(C\ge\frac{9}{10}\)
\(\Rightarrow maxC=\frac{9}{10}\Leftrightarrow x^2+\frac{1}{10}=0\)
\(\Leftrightarrow x^2=\frac{-1}{10}\)
\(\Leftrightarrow x=\sqrt{\frac{-1}{10}}\)hoặc \(x=-\sqrt{\frac{-1}{10}}\)( vô lý )
Vậy \(x\in\varnothing\)
a) Rút gọn rồi tìm giá trị của x để biểu thức: \(\frac{x^2}{x-2}.\left(\frac{x^2+4}{x}-4\right)+3\) có giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
b) Rút gọn rồi tìm giá trị của x để biểu thức: \(\frac{^{x^2}}{x-2}.\left(1-\frac{^{x^2}}{x+2}\right)-\frac{x^2+6x+4}{x}\)có giá trị lớn nhất. Tìm giá trị lớn nhất đo.
Tìm giá trị nhỏ nhất của\(\left(x-2\right)^2-1\)
Tìm giá trị nhỏ nhất của \(\frac{3}{\left(x-2\right)^2+5}\)
a) \(\left(x-2\right)^2\ge0\)
\(\Leftrightarrow\left(x-2\right)^2-1\ge-1\)
Vậy giá trị nhỏ nhất \(=-1\)
b) \(\left(x-2\right)^2+5\ge5\)
\(\Leftrightarrow\frac{1}{\left(x-2\right)^2+5}\le\frac{1}{5}\)
\(\Leftrightarrow\frac{3}{\left(x-2\right)^2+5}\le\frac{3}{5}\)
Vậy giá trị lớn nhất \(=\frac{3}{5}\)
Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất của :
D=\(\frac{\left|x\right|-2}{\left|x\right|+5}\) ; E=\(\frac{3.\left|x\right|+2}{2.\left|x\right|-5}\)
HELP ME!
Tìm giá trị lớn nhất, giá trị nhỏ nhất của: \(C=10+\left|\frac{1}{2}-x\right|\)
Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất của :
D=\(\frac{\left|x\right|-2}{\left|x\right|+5}\)
E=\(\frac{3.\left|x\right|+2}{2.\left|x\right|-5}\)
HELP ME!
Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất của :
D=\(\frac{\left|x\right|-2}{\left|x\right|+5}\)
E=\(\frac{3.\left|x\right|+2}{2.\left|x\right|-5}\)
HELP ME!