Cho tam giác ABC(A=90 độ),kẻ đường trung tuyến AM(M thuộc BC).Trên tia đối của tia MA lấy điểm E sao cho ME=MA.CMR:
a,Tam giác ABM=Tam giác ECM
b,AB//CE
c,Góc BAM>Góc MAC
Cho tam giác ABC có góc B = 90 độ, kẻ đường trung tuyến AM. Trên tia đối của tia MA lấy điểm E sao cho ME=MA.CMR:
a, Tam giác ABM= tam giác ECM
b, AB//CE
c, Góc BAM> góc MAC
d, Từ điểm M kẻ MH vuông góc AC.CMR: BM>MH
Cho tam giác ABC có góc B = 90 độ, vẽ trung tuyến AM. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh :
a) Tam giác ABM = tam giác ECM.
b) AC > CE.
c) Góc BAM > góc MAC.
d) BE // AC.
e) EC vuông góc BC.
Cho tam giác ABC vuông tại B .Kẻ đường trung tuyến AM(M thuộc BC).trên tia đối của tia MA lấy điểm E sao cho ME=MA.Chứng minh rằng:
a) Tam giác ABM=tam giác ECM
b) AB song sóng với CE
c) Góc BAM> góc MAC
a.
MB = MC (AM là trung tuyến)
\(\widehat{AMB}\) = \(\widehat{EMC}\) (Góc đối)
MA = ME (Giả thuyết)
=> Tam giác ABM = Tam giác ECM (Cạnh - góc - cạnh)
b.
Tam giác ABM = Tam giác ECM
ABM là tam giác vuông tại B
=> Tam giác ECM vuông tại C
=> EC vuông góc BC
Mà AB vuông góc BC
=> EC song song AB
c.
Ta có
\(\widehat{BAM}\) = 180o - 90o - \(\widehat{AMB}\)(1)
\(\widehat{MAC}\) = 180o - \(\widehat{ACM}\) - \(\widehat{AMC}\)
=> \(\widehat{MAC}\) = 180 - \(\widehat{ACM}\) - (180o - \(\widehat{AMB}\))
=> \(\widehat{MAC}\) = \(\widehat{ACM}\) - \(\widehat{AMB}\)(2)
(1) và (2) => \(\widehat{BAM}\) > \(\widehat{MAC}\)(Vì góc \(\widehat{ACM}\) < 90o)
Cho tam giác ABC có góc B = 90 độ, AM là đường trung tuyến , trên tia đối của tia MA lấy điểm E sao cho MA = ME, MH vuông góc với AC.
Chứng minh:
a,tam giác ABM=tam giác ECM.
b,AB // CE
c,góc BAM> góc MAC
d,BM>MH
Câu 1. Cho tam giác ABC có góc B =90 độ , vẽ trung tuyến AM . Trên tia đối của tia AM lấy điểm E sao cho ME=AM . C/m rằng :
a. Tam giác ABM=tam giác ECM
b. AC>CE
c. Góc BAM > góc MAC
Câu 2. Cho tam giác ABC cân ở A có AB=AC=17cm ; BC=16cm .Kẻ trung tuyến AM .C/m rằng :
a.AM vuông góc BC
b.Tính độ dài AM
Câu 3. Cho tam giác nhọn nhọn ABC , hai đường cao BM,CN . Trên tia đối của tia BM lấy điểm D sao cho BD =AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB . C/m :
a. góc ACE = góc ABD
b. Tam giác ACE = tam giác DBA
c. Tam giác AED là tam giác vuông cân
bài 2 cho tam giác ABC vuông tại b kẻ đường trung tuyến AM trên tia đối của tia AM lấy E sao cho MA=ME chứng minh rằng
a) tam giác ABM = tam giác ECM
b) AB song song CE
c) BAM > hoặc = MAC
d) từ M kẻ MH vuông góc với AC chứng minh BM>MH
mọi người giúp em với ạ em cảm ơn ạ !!
a: Xét ΔMAB và ΔMEC có
MA=ME
\(\widehat{AMB}=\widehat{EMC}\)
MB=MC
Do đó: ΔMAB=ΔMEC
b: Xét tứ giác ABEC có
M là trung điểm của AE
M là trung điểm của BC
Do đó: ABEC là hình bình hành
Suy ra: AB//EC
Cho tam giác ABC có góc B = 90o , vẽ đường trung tuyến AM. Trên tia đối MA lấy điểm E sao cho ME = MA. Chứng minh
a. Tam giác ABM = tam giác ECM
b. AC > CE
c. BAM > MAC
d. EC vuông góc với BC
Cho tam giác ABC có góc B= 90 độ , vẽ trung tuyến AM . Trên tia đối của tia MA lấy điểm E sao cho ME=AM . Chứng minh rằng: a) Tam giác ABM= tam giác ECM . b)góc BAM= góc MAC góc Viết cả giả thiết kết luận nhé nhanh nhé mai mik thi
a.Xét Δ ABM và Δ ECM có:
AM=ME (gt)
^AMB=^EMC( 2 góc đối đỉnh)
^A1=^E1(2 góc T/ứ)
Tam giác ABC vuông tại B , trung tuyến AM , trên tia đối của MA lấy điểm E saocho MA = ME , c/m
a. tam giác ABM = tam giác ECM
b. AB // CE
c. góc BAM > góc MAC
d. từ M kẻ MH vuông góc AC , c/m BM > MH