Những câu hỏi liên quan
Nguyễn Hồng Hà
Xem chi tiết
Kiệt Nguyễn
3 tháng 6 2020 lúc 16:34

Ta có: \(a^2-ab+3b^2+1=\left(a^2-2ab+b^2\right)+ab+\left(b^2+1\right)+b^2\)

\(=\left(a-b\right)^2+ab+\left(b^2+1\right)+b^2\ge ab+2b+b^2\)

\(=b\left(a+b+2\right)\Rightarrow\frac{1}{\sqrt{a^2-ab+3b^2+1}}\le\frac{1}{\sqrt{b\left(a+b+2\right)}}\)(1)

Tương tự: \(\frac{1}{\sqrt{b^2-bc+3c^2+1}}\le\frac{1}{\sqrt{c\left(b+c+2\right)}}\)(2); \(\frac{1}{\sqrt{c^2-ca+3a^2+1}}\le\frac{1}{\sqrt{a\left(c+a+2\right)}}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3) và sử dụng AM - GM kết hợp liên tục BĐT \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\), ta được:

\(P\le\frac{1}{\sqrt{b\left(a+b+2\right)}}+\frac{1}{\sqrt{c\left(b+c+2\right)}}+\frac{1}{\sqrt{a\left(c+a+2\right)}}\)

\(=\Sigma\frac{2}{\sqrt{4b\left(a+b+2\right)}}\)\(\le\Sigma\left(\frac{1}{4b}+\frac{1}{a+b+2}\right)\)(AM - GM)

\(=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\text{​​}\Sigma\left(\frac{1}{a+b+2}\right)\)

\(\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\text{​​}\Sigma\left[\frac{1}{4}\left(\frac{1}{a+b}\right)+\frac{1}{2}\right]\)

\(\le\frac{3}{4}+\text{​​}\left[\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\text{​​}\Sigma\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}\right)\right]\)

\(=\frac{3}{4}+\text{​​}\left[\frac{3}{8}+\text{​​}\frac{1}{8}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]\le\frac{3}{4}+\frac{3}{8}+\frac{3}{8}=\frac{3}{2}\)

Đẳng thức xảy ra khi a = b = c = 1

Bình luận (0)
 Khách vãng lai đã xóa
Kiệt Nguyễn
3 tháng 6 2020 lúc 17:00

Dòng thứ 10 sửa lại cho mình là \(\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\Sigma\left[\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{2}\right)\right]\)

Do olm có lỗi là mỗi lần bấm dấu ngoặc là số nó tự động nhảy ra ngoài

Bình luận (0)
 Khách vãng lai đã xóa
zZz Cool Kid_new zZz
11 tháng 6 2020 lúc 11:12

Cách khác

Ta đi chứng minh \(\sqrt{ab+3b^2+1}\ge\frac{a+5b+2}{4}\)

\(\Leftrightarrow16\left(ab+3b^2+1\right)\ge\left(a+5b+2\right)^2\)

\(\Leftrightarrow13\left(a-b\right)^2+10\left(b-1\right)^2+2\left(a-1\right)^2\ge0\)  ( luôn đúng )

Khi đó \(P\le\frac{4}{a+5b+2}+\frac{4}{b+5c+2}+\frac{4}{c+5a+2}\)

\(\le\frac{1}{a+b+2}+\frac{1}{4b}+\frac{1}{b+c+2}+\frac{1}{4c}+\frac{1}{c+a+2}+\frac{1}{4a}\)

\(\le\frac{1}{16}\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}+6\right)+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\le\frac{12}{16}+\frac{3}{4}=\frac{3}{2}\)

Đẳng thức xảy ra tại a=b=c=1

Bình luận (0)
 Khách vãng lai đã xóa
Trần Anh Vinh
Xem chi tiết
Ngọc Ngô
Xem chi tiết
Nguyễn Đại Nghĩa
12 tháng 4 2018 lúc 11:23

\(Ta có: \(\frac{1}{2a+3b+3c}=\frac{1}{\left(a+b\right)+\left(a+c\right)+2\left(b+c\right)}\) Theo Cauchy: \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\) => \(\frac{1}{2a+3b+3c}\le\frac{1}{4}\left(\frac{1}{\left(a+b\right)+\left(a+c\right)}+\frac{1}{2\left(b+c\right)}\right)\le\frac{1}{4}\left(\frac{1} {4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)+\frac{1}{2\left(b+c\right)}\right)\) => \(\frac{1}{2a+3b+3c}\le\frac{1}{8}\left(\frac{1}{2\left(a+b\right)}+\frac{1}{2\left(a+c\right)}+\frac{1}{b+c}\right)\) Tương tự: \(\frac{1}{3a+2b+3c}\le\frac{1}{8}\left(\frac{1}{2\left(a+b\right)}+\frac{1}{2\left(b+c\right)}+\frac{1}{a+c}\right)\) Và: \(\frac{1}{3a+3b+2c}\le\frac{1}{8}\left(\frac{1}{2\left(a+c\right)}+\frac{1}{2\left(b+c\right)}+\frac{1}{a+b}\right)\) => \(P\le\frac{1}{8}\left(\frac{2}{a+b}+\frac{2}{a+c}+\frac{2}{b+c}\right)=\frac{1}{4}.2017\) => Pmax  = 2017:4=504,25\)

Bình luận (0)
Bùi Thế Hào
11 tháng 4 2018 lúc 11:52

Ta có: \(\frac{1}{2a+3b+3c}=\frac{1}{\left(a+b\right)+\left(a+c\right)+2\left(b+c\right)}\)

Theo Cauchy: \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

=> \(\frac{1}{2a+3b+3c}\le\frac{1}{4}\left(\frac{1}{\left(a+b\right)+\left(a+c\right)}+\frac{1}{2\left(b+c\right)}\right)\le\frac{1}{4}\left(\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)+\frac{1}{2\left(b+c\right)}\right)\)

=> \(\frac{1}{2a+3b+3c}\le\frac{1}{8}\left(\frac{1}{2\left(a+b\right)}+\frac{1}{2\left(a+c\right)}+\frac{1}{b+c}\right)\)

Tương tự: \(\frac{1}{3a+2b+3c}\le\frac{1}{8}\left(\frac{1}{2\left(a+b\right)}+\frac{1}{2\left(b+c\right)}+\frac{1}{a+c}\right)\)

Và: \(\frac{1}{3a+3b+2c}\le\frac{1}{8}\left(\frac{1}{2\left(a+c\right)}+\frac{1}{2\left(b+c\right)}+\frac{1}{a+b}\right)\)

=> \(P\le\frac{1}{8}\left(\frac{2}{a+b}+\frac{2}{a+c}+\frac{2}{b+c}\right)=\frac{1}{4}.2017\)

=> Pmax = 2017:4=504,25

Bình luận (0)
0o0 Hoàng Phú Huy 0o0
12 tháng 4 2018 lúc 7:17

\(Ta có: \(\frac{1}{2a+3b+3c}=\frac{1}{\left(a+b\right)+\left(a+c\right)+2\left(b+c\right)}\) Theo Cauchy: \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\) => \(\frac{1}{2a+3b+3c}\le\frac{1}{4}\left(\frac{1}{\left(a+b\right)+\left(a+c\right)}+\frac{1}{2\left(b+c\right)}\right)\le\frac{1}{4}\left(\frac{1} {4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)+\frac{1}{2\left(b+c\right)}\right)\) => \(\frac{1}{2a+3b+3c}\le\frac{1}{8}\left(\frac{1}{2\left(a+b\right)}+\frac{1}{2\left(a+c\right)}+\frac{1}{b+c}\right)\) Tương tự: \(\frac{1}{3a+2b+3c}\le\frac{1}{8}\left(\frac{1}{2\left(a+b\right)}+\frac{1}{2\left(b+c\right)}+\frac{1}{a+c}\right)\) Và: \(\frac{1}{3a+3b+2c}\le\frac{1}{8}\left(\frac{1}{2\left(a+c\right)}+\frac{1}{2\left(b+c\right)}+\frac{1}{a+b}\right)\) => \(P\le\frac{1}{8}\left(\frac{2}{a+b}+\frac{2}{a+c}+\frac{2}{b+c}\right)=\frac{1}{4}.2017\) => Pmax  = 2017:4=504,25\)

Bình luận (0)
Lee Suho
Xem chi tiết
nguyễn công huy
Xem chi tiết
Trang Huyen Trinh
Xem chi tiết
Nguyễn Thị Mát
Xem chi tiết
vũ văn tùng
Xem chi tiết
tth_new
28 tháng 3 2020 lúc 7:39

Dự đoán: Min P = -1 khi a = b  = c = 1

GIải:

Đặt \(p=a+b+c;q=ab+bc+ca;r=abc\) thì r = 1. 

Cần chứng minh: \(p-2\sqrt{1+q}\ge-1\Leftrightarrow p+1\ge2\sqrt{1+q}\)

\(\Leftrightarrow p^2+2p+1\ge4\left(1+q\right)\)

\(\Leftrightarrow\left(p^2-4q\right)+\left(2p-3\right)\ge0\). Theo Schur:

 \(p^3+9r\ge4pq\Leftrightarrow p\left(p^2-4q\right)\ge-9r=-9\)

\(\Rightarrow p^2-4q\ge-\frac{9}{p}\). Do đó cần chứng minh:

\(-\frac{9}{p}+2p-3\ge0\Leftrightarrow\frac{\left(p-3\right)\left(2p+3\right)}{p}\ge0\)

Đúng vì: \(p=a+b+c\ge3\sqrt[3]{abc}=3\)

Đẳng thức xảy ra khi a = b = c = 1

Bình luận (0)
 Khách vãng lai đã xóa
Ah Min
Xem chi tiết
Hoàng Thanh Tuấn
4 tháng 6 2017 lúc 10:31
có : \(\hept{\begin{cases}\left(a+b\right)^2=1\\\left(a-b\right)^2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2+2ab+b^2=1\\a^2-2ab+b^2\ge0\end{cases}\Leftrightarrow a^2+b^2\ge\frac{1}{2}}\)   nên : \(P=a^2+b^2+\frac{1}{a}+\frac{1}{b}\ge\frac{1}{2}+\frac{4}{a+b}=\frac{1}{2}+4=\frac{9}{2}\)\(P_{min}=\frac{9}{2}\Leftrightarrow a=b=\frac{1}{2}\)
Bình luận (0)
Thắng Nguyễn
4 tháng 6 2017 lúc 10:33

Bài 1: Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(1^2+1^2\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\Rightarrow a^2+b^2\ge\frac{1}{2}\)

Lại có BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\left(a-b\right)^2\ge0\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}=4\left(a+b=1\right)\)

Cộng theo vế 2 BĐT trên có:

\(P=a^2+b^2+\frac{1}{a}+\frac{1}{b}\ge4+\frac{1}{2}=\frac{9}{2}\)

Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)

Bài 2: Áp dụng BĐT AM-GM ta có:

\(VT^2=\left(x-1\right)+\left(3-x\right)+2\sqrt{\left(x-1\right)\left(3-x\right)}\)

\(=2+2\sqrt{\left(x-1\right)\left(3-x\right)}\)

\(\le2+\left(x-1\right)+\left(3-x\right)=4\)

\(\Rightarrow VT^2\le4\Rightarrow VT\le2\left(1\right)\). Lại có:

\(VP=x^2-4x+4+2=\left(x-2\right)^2+2\ge2\left(2\right)\)

Từ (1);(2) xảy ra khi 

\(VT=VP=2\Rightarrow\left(x-2\right)^2+2=2\Rightarrow\left(x-2\right)^2=0\Rightarrow x=2\) (thỏa)

Vậy x=2 là nghiệm của pt

Bình luận (0)
Hoàng Thanh Tuấn
4 tháng 6 2017 lúc 11:29

2. \(\sqrt{x-1}+\sqrt{3-x}=x^2-4x+6\)

Điều kiện : \(\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}\Leftrightarrow}1\le x\le3\left(1\right)\)

(Nháp nhé : dễ thấy phương trình có nghiệm \(x=2\) nên ta sẽ thêm bớt để có \(\left(x-2\right)\)là nhân tử chung )

\(\Leftrightarrow\sqrt{x-1}-1+\sqrt{3-x}-1=x^2-4x+4\)

nhân liên hợp có :

\(\Leftrightarrow\frac{\left(\sqrt{x-1}-1\right)\left(\sqrt{x-1}+1\right)}{\left(\sqrt{x-1}+1\right)}+\frac{\left(\sqrt{3-x}+1\right)\left(\sqrt{3-x}-1\right)}{\left(\sqrt{3-x}+1\right)}=\left(x-2\right)^2\)

\(\Leftrightarrow\frac{x-2}{\left(\sqrt{x-1}+1\right)}+\frac{-\left(x-2\right)}{\left(\sqrt{3-x}+1\right)}=\left(x-2\right)^2\)

\(\Leftrightarrow\left(x-2\right)\left[\frac{1}{\left(\sqrt{x-1}+1\right)}-\frac{1}{\left(\sqrt{3-x}+1\right)}-\left(x-2\right)\right]=0\)

\(x-2=0\Leftrightarrow x=2\)vì \(\left(\sqrt{x-1}+1\right)>\left(\sqrt{3-x}+1\right)\Rightarrow\frac{1}{\left(\sqrt{x-1}+1\right)}-\frac{1}{\left(\sqrt{3-x}+1\right)}< 0\)nên  \(\frac{1}{\left(\sqrt{x-1}+1\right)}-\frac{1}{\left(\sqrt{3-x}+1\right)}-\left(x-2\right)< 0\forall x\in\left\{1.3\right\}\)do đó phương trình vô nghiệmKết luận nghiệm nhé
Bình luận (0)