Cho tam giác ABC cân tại A có AM là đường phân giác
a.Chứng minh tam giác ABM=tam giác ACM
b.Gọi G là trọng tâm của tam giác ABC.Chứng minh AMG thẳng hàng
c.Tính MG .Biết AB=13,BC=10
Mọi người giúp mk vs ạ mai mk thi rồi ạ?!
Cho tam giác ABC cân tại A có AD là đường phân giác
a) Chứng minh tam giác ABD = tam giác ACD
b) Gọi G là trọng tâm của tam giác tam giác ABC.Chứng minh ba điểm A;D;G thẳng hàng
c)Tính DG biết AB = 13 cm,BC = 10 cm
a. xét tgiac ADC và tgiac ADB có
AD là cạnh chung
góc DAB = góc DAC(gt)
AB=AC(gt)
vậy tg ADC=tg ADB(c.g.c)
b.theo cminh cau a ta có DB=DC(2 cạnh tương ứng)
nên AD là đường trung tuyến ứng với cạnh BC mà G là trọng tâm tâm giác ABC nên A D G thẳng hàng
c. ta có BD=\(\frac{BC}{2}\)= 5cm
theo tính chất trong tam giác cân ta có Ad là đường trung tuyến ứng với đỉnh cân nên AD cũng là đường cao
áp dụng định lý pytago vào tamgiac vuông ADB có
\(^{^{ }AD^2}\)=\(^{^{ }AB^2}\)- \(^{^{ }BC^2}\)
\(^{^{ }AD^2}\)=\(^{^{ }13^2}\)-\(^{^{ }5^2}\)
\(^{^{ }AD^2}\)=144
\(^{^{ }AD^{ }}\)=12
ta lại có DG= \(\frac{1}{3}\)AD=\(\frac{1}{3}\) .12=4cm
a) tam giác ABD = tam giác ACD chứ ?????????
Giúp mk vs mọi người ơi!!!
Giúp mk vs ạ!!!
Cho tam giác ABC cân tại A. Vẽ tia phân giác của góc BAC cắt cạnh BC tại M.
a) Chứng minh tam giác ABM= tam giác ACM và AM vuông góc tại BC
b) Vẽ trung tuyến BQ của tam giác ABC cắt AM tại G. Chứng minh: G là trọng tâm của tam giác ABC.
c) Cho AB= 15 cm, BC = 18cm. Tính độ dài đoạn thẳng AG
d) Qua M kẻ đường thẳng song song AC cắt AB tại D. Chứng minh D,G,C thẳng hàng.
tự kẻ hình nha
a) vì tam giác ABC cân A=> AB=AC
xét tam giác ABM và tam giác ACM có
A1=A2(gt)
AB=AC(cmt)
AM chung
=> tam giác ABM= tam giác ACM(cgc)
=> AMB=AMC(hai góc tương ứng)
mà AMB+AMC=180 độ( kề bù)
=> AMB=AMC=180/2=90 độ=> AM vuông góc với BC
b) từ tam giác AMB= tam giác AMC=> BM=CM( hai cạnh tương ứng)
=> M là trung điểm BC=> AM là trung tuyến
BQ là trung tuyến
mà AM giao BQ tại G=> G là trọng tâm của tam giác ABC
c) ta có BC=BM+CM mà BM=CM=> BM=CM=BC/2=18/2=9 cm
ta có AM^2=AB^2-BM^2=15^2-9^2=225-81=144=12^2=> AM=12
vì G là trọng tâm của tam giác ABC=> AG=2/3AM=> AG=12*2/3=8 cm
d) vì MD//AC=> CAM=AMD( so le trong)
mà CAM=BAM(gt)
=> BAM=AMD=> tam giác AMD cân D=> AD=DM
vì tam giác ABM vuông tại M=> ABM+BAM=90 độ=> ABM=90 độ-BAM
vì AMD+DMB=AMB=> DMB=90 độ-AMD
mà AMD=BAM (cmt)
=> DMB=ABM=> tam giác DMB cân D=> BD=DM=> BD=AD=> D là trung điểm AB=> DC là trung tuyến
mà G là trọng tâm => G thuộc CD=> D, G, C thẳng hàng
a) vì tam giác ABC cân A=> AB=AC
xét tam giác ABM và tam giác ACM có
A1=A2(gt)
AB=AC(cmt)
AM chung
=> tam giác ABM= tam giác ACM(cgc)
=> AMB=AMC(hai góc tương ứng)
mà AMB+AMC=180 độ( kề bù)
=> AMB=AMC=180/2=90 độ=> AM vuông góc với BC
b) từ tam giác AMB= tam giác AMC=> BM=CM( hai cạnh tương ứng)
=> M là trung điểm BC=> AM là trung tuyến
BQ là trung tuyến
mà AM giao BQ tại G=> G là trọng tâm của tam giác ABC
c) ta có BC=BM+CM mà BM=CM=> BM=CM=BC/2=18/2=9 cm
ta có AM^2=AB^2-BM^2=15^2-9^2=225-81=144=12^2=> AM=12
vì G là trọng tâm của tam giác ABC=> AG=2/3AM=> AG=12*2/3=8 cm
d) vì MD//AC=> CAM=AMD( so le trong)
mà CAM=BAM(gt)
=> BAM=AMD=> tam giác AMD cân D=> AD=DM
vì tam giác ABM vuông tại M=> ABM+BAM=90 độ=> ABM=90 độ-BAM
vì AMD+DMB=AMB=> DMB=90 độ-AMD
mà AMD=BAM (cmt)
=> DMB=ABM=> tam giác DMB cân D=> BD=DM=> BD=AD=> D là trung điểm AB=> DC là trung tuyến
mà G là trọng tâm => G thuộc CD=> D, G, C thẳng hàng
Cho tam giác ABC cân tại A, AM là đường phân giác. Đường thẳng vuông góc với BC tại C cắt đường thẳng AB tại N.
a/ CM: tam giác ABM = tam giác ACM.
b/ CM: tam giác ACN là tam giác cân,
c/ Gọi G là giao điểm của AC và MN. CM: G là trọng tâm của tam giác BCN.
d/ Tính độ dài CN khi BC=18cm và MG= 5cm.
Bạn nào biết giải giúp minh cụ thể với ạ. M cám ơn nhiều :)
a) xét tam giác ABM và tam giác ACM ta có
AM=AM ( cạnh chung)
AB=AC( tam giác ABC cân tại A)
goc MAB = góc MAC ( AM là tia p.g góc BAC)
->tam giac ABM= tam giac ACM (c-g-c)
b)Xét tam giac ABC cân tại A ta có
AM la đường phân giác (gt)
-> AM là đường cao
-> AM vuông góc BC
mà NC vuông góc BC (gt)
nên AM//NC
ta có
góc BAM = goc ANC (2 góc đồng vị và AM//CN)
góc CAM=góc ACN (2 góc sole trong và AM//CN)
góc BAM = góc CAM ( tam giac ABM= tam giac ACM)
-> goc ANC = góc ACN
=> tam giac ANC cân tại A
c)ta có
AB=AC ( tam giac ABC cân tại A)
AN=AC ( tam giac ANC cân tại A)
-> AB=AN
-> A là trung điểm BN
Xét tam giác ABC cân tại A ta có
AM là tia phấn giác góc BAC (gt)
-> AM là đường trung tuyến
-> M là trung điểm BC
Xét tam giac BCN ta có
CA là đường trung tuyến ( A là trung điểm BN)
NM là đường trung tuyến ( M là trung điểm BC)
CA cắt NM tại G (gt)
-> G là trọng tâm tam giac BCN
d)ta có MC=BC:2 ( M là trung điểm BC)
MC=18:2=9 (cm)
Xét tam giác BNC ta có
NM là đường trung tuyến (M là trung điểm BC)
G là trọng tâm (cmc)
-> MG=1/3 MN->MN=3MG=3.5=15
Xét tam giác MNC vuông tại C ta có
MN2=NC2+MC2 ( định lý pitago)
152=NC2+92
NC2=152-92=144
NC=12
1. Cho tam giác ABC cân tại A với đường trung tuyến AM.
a) Chứng minh tam giác ABM=tam giác ACM.
b) Biết AB= 5 cm, BC=6 cm. Gọi G là trọng tâm của tam giác ABC, tính độ dài đoạn thẳng MG và so sánh góc ABG với góc GAC.
a,XétΔABM và ΔACM có :
^AMB=^AMC(=90o)
AB=AC(GT)
AM :cạnh chung(gt)
Suy ra:ΔABM= ΔACM (ch-cgv)
=>MB=MC( 2 cạnh tương ứng)
b,Ta có MB=BC2 =242 = 12
Δ AMB vuông tại M có :
AM2+BM2=AB2 ( đl Pytago)
=>AM2=AB2−BM2
= 202−122
= 162
=>AM=16
Giúp mk bài này vs mọi người ơi!!!
Cho tam giác ABC cân tại A. Vẽ tia phân giác của góc BAC cắt cạnh BC tại M.
a) Chứng minh tam giác ABM= tam giác ACM và AM vuông góc tại BC
b) Vẽ trung tuyến BQ của tam giác ABC cắt AM tại G. Chứng minh: G là trọng tâm của tam giác ABC.
c) Cho AB= 15 cm, BC = 18cm. Tính độ dài đoạn thẳng AG
A) XÉT \(\Delta ABM\)VÀ\(\Delta ACM\)CÓ
\(AB=AC\left(GT\right)\)
\(\widehat{A_1}=\widehat{A_2}\left(GT\right)\)
AM LÀ CẠNH CHUNG
=>\(\Delta ABM\)=\(\Delta ACM\)( C-G-C)
TRONG TAM GIÁC CÂN TIA PHÂN GIÁC CŨNG LÀ ĐƯỜNG CAO
=> AM LÀ ĐƯỜNG CAO CỦA \(\Delta ABC\)
\(\Rightarrow AM\perp BC\)
B) TRONG TAM GIÁC CÂN TIA PHÂN GIÁC CŨNG LÀ TRUNG TUYẾN
=> AM LÀ TRUNG TUYẾN THỨ NHẤT CỦA \(\Delta ABC\)
MÀ BG LÀ ĐƯỜNG TRUNG TUYẾN THỨ HAI CỦA \(\Delta ABC\)
HAI ĐƯỜNG TRUNG TUYẾN NÀY CẮT NHAU TẠI G
\(\Rightarrow G\)LÀ TRỌNG TÂM CỦA \(\Delta ABC\)
Giúp mk vs ạ!!!
Cho tam giác ABC cân tại A. Vẽ tia phân giác của góc BAC cắt cạnh BC tại M.
a) Chứng minh tam giác ABM= tam giác ACM và AM vuông góc tại BC
b) Vẽ trung tuyến BQ của tam giác ABC cắt AM tại G. Chứng minh: G là trọng tâm của tam giác ABC.
c) Cho AB= 15 cm, BC = 18cm. Tính độ dài đoạn thẳng AG
d) Qua M kẻ đường thẳng song song AC cắt AB tại D. Chứng minh D,G,C thẳng hàng.
Giúp mk vs ạ!!!
Cho tam giác ABC cân tại A. Vẽ tia phân giác của góc BAC cắt cạnh BC tại M.
a) Chứng minh tam giác ABM= tam giác ACM và AM vuông góc tại BC
b) Vẽ trung tuyến BQ của tam giác ABC cắt AM tại G. Chứng minh: G là trọng tâm của tam giác ABC.
c) Cho AB= 15 cm, BC = 18cm. Tính độ dài đoạn thẳng AG
d) Qua M kẻ đường thẳng song song AC cắt AB tại D. Chứng minh D,G,C thẳng hàng.
Bài 1: cho tam giác ABC cân tại A có AD là đừong phân giác.
a) Chứng minh tam giá ABD= tam giác ACD
b) gọi G là trọng tâm của tam giác ABC.Chứng minh ba điểm A;D;G thẳng hàng
c) tính DG biết AB=13cm;BC=10cm
Cho tam giác ABC cân tại A có AD là đường phân giác.
a) Chứng minh ∆ A B D = ∆ A C D .
b) Gọi G là trọng tâm của tam giác ABC. Chứng mình ba điểm A, D, G thẳng hàng.
c) Tính DG biết AB = 13 cm, BC = 10 cm.
a, Xét tam giác ABH và tam giác ACH vuông tại H có: +, AB = AC ( vì tam giác ABC cân tại A)
+, AH chung
=> tam giác ABH = tam giác ACH (ch-cgv) => BH = CH = 6/2 = 3cm
b, Vì BH = CH => AH là đường trung tuyến của tam giác ABC => G nằm trên AH => A, G, H thẳng hàng
c, Vì tam giác ABH = tam giác ACH => góc BAH = góc CAH
Xét tam giác ABG và tam giác ACG có
AB = AC ( vì tam giác ABC cân tại A )
góc BAH = góc CAH ( chứng minh trên)
AG chung
=>tam giác ABG = tam giác ACG(c.g.c)
=> góc ABG = góc ACG