trong mặt phẳng tọa độ oxy cho hai đường thẳng (d1)2x-y+5=0 và (d2) x+y-3=0 cắt nhau tại i. phương trình đường thẳng đi qua m (-2;0) cắt d1, d2 tại a, b sao cho tam giác iab cân tại a có phương trình dạng ax+by+2=0. tính t=a-5b
trên mặt phẳng tọa độ cho 2 đường thẳng (d1) : x-y+1=0, (d2) : x-3y-3=0 cắt nhau tại A. Hãy viết pt đường thẳng (d) đi qua M(1;1) sao cho (d1) cắt (d2) lần lượt tại tại B và C, Tam giác ABC vuông
bài 1 cho hàm số bặc nhất y=f(x) =ax +3 (a khác 0)
1) tìm hệ số góc a , biết rằng đồ thị của hàm số // với đường thẳng y=3/2x
2) với hệ số a vừa tìm được
a) hàm số trên là đồng biến hay nghịch biến trên R
b) Hãy tính f(0); f(-1)
c tìm giá trị của m để hàm số đồ thị y=(m-5/2)x+1 // với đồ thji hàm số trên
bài 2 :cho 2 đường thẳng y=(k-3)x-3k+3(d1) và y= (2k+1)x+k=5(d2) tìm các giá trị của k để
a ) d1 và d2 cát nhau
b) s1 và d2 cắt nhau tạ 1 điểm trên trjuc tung
c) d1 và d2 // với nhau
d) d1 và d2 vương góc với nhau
e) d1 và d2 trùng nhau
cho (d1):y = `1/5` x +1, (d2):y=ax+b (a khác 0)
Biết (d2) // với (d3):y=`-2/5` x-11 và cắt (d1) ở điểm A có hoành độ bằng `-5`. (d1) và (d2) lần lượt cắt trục Oy ở điểm B và C. Tính diện tích tam giác ABC
Thay x=-5 vào (d1), ta được:
\(y=\dfrac{1}{5}\cdot\left(-5\right)+1=-1+1=0\)
Vì (d2)//(d3) nên \(\left\{{}\begin{matrix}a=-\dfrac{2}{5}\\b\ne-11\end{matrix}\right.\)
Vậy: (d2): \(y=-\dfrac{2}{5}x+b\)
Thay x=-5 và y=0 vào (d2), ta được:
\(b-\dfrac{2}{5}\cdot\left(-5\right)=0\)
=>b+2=0
=>b=-2
Vậy: (d2): \(y=-\dfrac{2}{5}x-2\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{5}\cdot0+1=1\end{matrix}\right.\)
Tọa độ C là:
\(\left\{{}\begin{matrix}x=0\\y=-\dfrac{2}{5}\cdot0-2=-2\end{matrix}\right.\)
Vậy: A(-5;0); B(0;1); C(0;-2)
\(AB=\sqrt{\left(0+5\right)^2+\left(1-0\right)^2}=\sqrt{26}\)
\(AC=\sqrt{\left(0+5\right)^2+\left(-2-0\right)^2}=\sqrt{29}\)
\(BC=\sqrt{\left(0-0\right)^2+\left(-2-1\right)^2}=3\)
Xét ΔABC có \(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{26+29-9}{2\cdot\sqrt{26}\cdot\sqrt{29}}=\dfrac{23}{\sqrt{754}}\)
=>\(sinBAC=\sqrt{1-\left(\dfrac{23}{\sqrt{754}}\right)^2}=\dfrac{15}{\sqrt{754}}\)
Diện tích tam giác ABC là:
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinBAC\)
\(=\dfrac{1}{2}\cdot\dfrac{15}{\sqrt{754}}\cdot\sqrt{26\cdot29}=7,5\)
cho 2 đường thẳng y=(k-3)x-3k+3(d1)
y= (2k+1)x+k+5(d2) .Tìm các giá trị của k để
a ) d1 và d2 cắt nhau
b) d1 và d2 cắt nhau tại 1 điểm trên trục tung
c) d1 và d2 song song với nhau
d) d1 và d2 vuông góc với nhau
e) d1 và d2 trùng nhau
a, cắt : a khác a'
b, b= b'; a khác a'
c, a=a' ; b khác b'
d, a*a'= -1
e, a= a' ;b= b'
Cho hai đường thẳng (d1 ) : y = (m +1)x + m+3 và (d2 ) : y= (2m+1)x-m+3 với m khác 0. Tìm tất cả các giá trị m (m khác 0) để (d1) và (d1) cắt nhau tại điểm M sao cho M nằm trên đường thẳng (d): y=x
Tìm giá trị của a và b để hai đường thẳng ( d 1 ) ∶(3a - 1)x + 2by = 56 và ( d 2 :1/2 ax - (3b + 2)y = 3 cắt nhau tại điểm M(2; -5).
Hai đường thẳng ( d 1 ) và ( d 2 ) cắt nhau tại M(2; -5) nên:
M ∈ ( d 1 ): 3 a - 1 2 + 2b.(-5) = 56 ⇔ 6a - 10b = 58
M ∈ ( d 2 ): 1/2 a.2 - (3b + 2)(-5) = 3 ⇔ a + 15b = -7Khi đó, ta có hệ phương trình:
Vậy a = 8 và b = -1 thì hai đường thẳng ( d 1 ) và ( d 2 ) cắt nhau tại M(2; -5).
cho (d1): y = mx-m+2 và (d2):y=(m-3)x+m. Tìm m để (d1) và (d2) cắt nhau tại 1 điểm trên trục tung
\(PTHDGD:mx-m+2=\left(m-3\right)x+m\\ \text{Thay }x=0\Leftrightarrow2-m=m\Leftrightarrow m=1\)