Tìm các số thực x,y thỏa mãn \(\hept{\begin{cases}x^2+y^2=9\\x^3+y^3=-27\end{cases}}\)
CHO hai số thực x,y thỏa mãn điều kiện: \(\hept{\begin{cases}X^{3\:\:}\\X^2+X^2Y^2-2Y=0\end{cases}}+2Y^2-4Y+3=0\)
TÍnh giá trị của biểu thức P=x^2018+y^2018
Cho các số dương x, y, z thỏa mãn: \(\hept{\begin{cases}x^2+xy+\frac{y^2}{3}=25\\\frac{y^2}{3}+z^2=9\\z^2+xz+x^2=16\end{cases}}\).Tính giá trị biểu thức: \(N=xy+2yz+3zx\)
Cho các số dương x, y, z thỏa mãn: \(\hept{\begin{cases}x^2+xy+\frac{y^2}{3}=25\\\frac{y^2}{3}+z^2=9\\z^2+xz+x^2=16\end{cases}}\)
Tính giá trị biểu thức: \(N=xy+2yz+3zx\)
1. tìm các số nguyên x,y thỏa mãn : x3 + y3 = 2016
2. tìm bộ 3 số nguyên dương a,b,c biết rằng :
\(\hept{\begin{cases}ac=b\left(a-b+c\right)\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\end{cases}}\)
giúp mình nha.
1,https://diendantoanhoc.net/topic/157361-t%C3%ACm-c%C3%A1c-s%E1%BB%91-nguy%C3%AAn-x-y-tho%E1%BA%A3-m%C3%A3n-x3y32016/
Tìm nghiệm (x , y) thỏa mãn x<0 , y<0 của hệ phương trình
\(\hept{\begin{cases}2x^2-y^3+2xy+2xy^2=3\\x^2-y^3+xy=1\end{cases}}\)
ko giải thì thôi mình tích sai mỗi ngày 3 cái đó
bn noob đòi hok toán ơi nếu bn ko tl thì đừng đăng vậy nx mik thấy bn viết từ này rất nhiều trong các câu hỏi
xl anh Châu nha e mới lớp 6 ko tl đc e tl vì nhắc bn kia thôi
thành thật xlllllllllll
Tìm các giá trị x, y thõa mãn hệ: \(\hept{\begin{cases}x^4+y^2\le1\\x^5+y^3\ge1\end{cases}}\)
Cho các số thực x, y, z, t thỏa mãn: \(\hept{\begin{cases}\frac{t}{x+2y+2z}=1\\\frac{t}{z-3x}=\frac{1}{2}\end{cases}}\)
Tính: \(P=\frac{t}{x+8y+9z}\)
~Giúp tớ nhé~
Cho x,y là hai số thực thỏa mãn \(\hept{\begin{cases}ax+by=c\\bx+cy=a\\cx+ay=b\end{cases}}\)
Chứng minh rằng : \(a^3+b^3+c^3=3abc\)
#)Giải :
Ta có : \(\hept{\begin{cases}ax+by=c\\bx+cy=a\\cx+ay=b\end{cases}\Rightarrow ax+by+bx+cy+cx+ay=c+a+b}\)
\(\Rightarrow x\left(a+b+c\right)+y\left(a+c+b\right)=a+b+c\)
\(\Rightarrow\left(x+y-1\right)\left(a+b+c\right)=0\)
\(\Rightarrow a+b+c=0\Rightarrow a+b=-c\)
\(\Rightarrow a^3+b^3+c^3=a^3+3ab\left(a+b\right)+b^3-3ab\left(a+b\right)+c^3\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3\)
\(=\left(-c\right)^3-3ab\left(-c\right)+c^3=3abc\)
\(\Rightarrowđpcm\)
Bài giải thiếu trường hợp \(x+y-1=0\) rồi
#)Góp ý :
alibaba nguyễn hình như đề bài yêu cầu cm thì chỉ cần cm thui là đc chứ ???
Chuyên Hải Dương 2010:
Cho trước \(a,b\in R\); gọi x,y là 2 số thực dương thỏa mãn \(\hept{\begin{cases}x+y=a+b\\x^3+y^3=a^3+b^3\end{cases}}\)
Chứng minh rằng :\(x^{2011}+y^{2011}=a^{2011}+b^{2011}\)
Ta có \(\hept{\begin{cases}x+y=a+b\\x^3+y^3=a^3+b^3\end{cases}\left(1\right)}\)
\(\left(1\right)\Leftrightarrow\hept{\begin{cases}x+y=a+b\\\left(x+y\right)^3-3xy\left(x+y\right)=\left(a+b\right)^3-3ab\left(a+b\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=a+b\\xy\left(a+b\right)=ab\left(a+b\right)\end{cases}\left(2\right)}\)
Nếu \(a+b\ne0\)thì \(\left(2\right)\Leftrightarrow\hept{\begin{cases}x+y=a+b\\xy=ab\end{cases}}\)
=> x,y là 2 nghiệm của phương trình \(X^2-\left(a+b\right)X+ab=0\)
Giải ra ta có \(\hept{\begin{cases}x=b\\y=a\end{cases};\hept{\begin{cases}x=a\\y=b\end{cases}}}\)\(\Rightarrow x^{2011}+y^{2011}=a^{2011}+b^{2011}\)(3)
Nếu \(a+b=0\Rightarrow a=-b\)
Ta có hệ phương trình \(\hept{\begin{cases}x+y=0\\x^3+y^3=0\end{cases}\Rightarrow x=-y}\)
\(\Rightarrow\hept{\begin{cases}x^{2011}+y^{2011}=0\\a^{2011}+y^{2011}=0\end{cases}}\)\(\Rightarrow x^{2011}+y^{2011}=a^{2011}+b^{2011}\)(4)
Từ (3) và (4) => đpcm