Tìm số tự nhiên x biết : x + ( x + 1) + (x + 2 ) +..........+ ( x + 99) = 5850
Tìm số tự nhiên x biết rằng:
1/3+1/6+1/10+...+2/x(x+1)=99/101
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{99}{101}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{99}{101}\)
\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{99}{101}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{99}{101}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{99}{101}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{99}{101}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{99}{202}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{101}\)
\(\Leftrightarrow x=100\)
Tìm số tự nhiên x biết rằng:
1/3+1/6+1/10+...+2/x(x+1)=99/101
Tìm số tự nhiên x, biết
(x-1) + (x+3)+(x-5)+...+(x+99) + (x-101) = 5100.
Tìm số tự nhiên x,y biết:
a,x(x+1) =2+4+6+8+...+2500
b, (x+1)2 -1 = 99
Tìm số tự nhiên x biết : 100× x =1×2+2×3+3×4+........99×100
tìm số tự nhiên x biết :
a) 1^3+2^3+.........+10^3=(x+1)^2
b) 1+3+5+.......+99=(x-2)^2
theo công thức đã cho => 1^3+2^3+..+10^3=(1+2+3+..+10)^2
=55^2 = (x+1)^2
=> x= 55-1=54
1. tìm x biết (3/1*3 + 3/3*5 + 3/5*7 +......+ 3/97*99) - x : 3/2 = 7/3
2. tìm số tự nhiên x,y biết (x-y)^2015 = 5^2015 và phân số x/y rút gọn được thành 4/3
1.
\(\left(\frac{3}{1\times3}+\frac{3}{3\times5}+\frac{3}{5\times7}+...+\frac{3}{97\times99}\right)-x:\frac{3}{2}=\frac{7}{3}\\
\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{97\times99}\right):\frac{3}{2}-x:\frac{3}{2}=\frac{7}{3}\\\left[\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)-x\right]:\frac{3}{2}=\frac{7}{3}\\
\left(1-\frac{1}{99}\right)-x=\frac{7}{3}\times\frac{3}{2}\\
\frac{98}{99}-x=\frac{7}{2}\\
x=\frac{98}{99}-\frac{7}{2}=\frac{-497}{198}\)
2.\(\frac{x}{y}=\frac{4}{3}\Rightarrow\hept{\begin{cases}x=4a\\y=3a\\x-y=4a-3a=a\end{cases}}\\ \left(x-y\right)^{2015}=5^{2015}\Rightarrow x-y=5\\ \Rightarrow a=5\Rightarrow\hept{\begin{cases}x=4\times5=20\\y=3\times5=15\end{cases}}\)
1.
(31×3+33×5+35×7+...+397×99)−x:32=73(21×3+23×5+25×7+...+297×99):32−x:32=73[(1−13+13−15+15−17+...+197−199)−x]:32=73(1−199)−x=73×32
tìm số tự nhiên x biết
a,(2x-1)^2017=(2x-1)^2018
b,1+3+5+....+99=(x-2)^2
A = 3 mũ 1+ 3 mũ 2 + 3 mũ 3+...+ 3 mũ 99
Tìm số tự nhiên x biết 2 . A +3 = 9 mũ 2.x+6
\(A=3+3^2+....+3^{99}\)
\(3A=3^2+3^3+...+3^{100}\)
\(3A-A=3^2+3^3+...+3^{100}-3-3^2-...-3^{99}\)
\(2A=3^{100}-3\)
\(A=\dfrac{3^{100}-3}{2}\)
\(\Rightarrow2A+3=9^{2x+6}\)
\(\Rightarrow2\cdot\dfrac{3^{100}-3}{2}+3=\left(3^2\right)^{2x+6}\)
\(\Rightarrow3^{100}-3+3=3^{2\left(2x+6\right)}\)
\(\Rightarrow3^{100}=3^{4x+12}\)
\(\Rightarrow4x+12=100\)
\(\Rightarrow4x=88\)
\(\Rightarrow x=22\)