Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Yến Nhi
Xem chi tiết
Bùi Thị Ngọc Hà
Xem chi tiết
MinMin Park
Xem chi tiết
Danh Phan Sỹ
Xem chi tiết
Fire Sky
3 tháng 1 2019 lúc 19:38

\(S=1+2+2^2+2^3+...+2^{2020}+2^{2021}\)

\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{2020}+2^{2021}\right)\)

\(=3+2^2\left(1+2\right)+...+2^{2020}\left(1+2\right)\)

\(=3+2^2.3+...+2^{2020}.3⋮3\)

     VẬY \(S⋮3\)

Trả lời :...........................................

SCSH: (2021 - 1) : 1 = 2020

Tổng: (2021 + 1) : 2 = 1011

Hk tốt,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

k nhé

Kiệt Nguyễn
3 tháng 1 2019 lúc 19:42

\(S=1+2+2^2+2^3+...+2^{2020}+2^{2021}\)

\(\text{Số số hạng của S là 2022 số , chia làm 1011 cặp , mỗi cặp 2 số .}\)

\(\Leftrightarrow S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{2020}+2^{2021}\right)\)

\(\Leftrightarrow S=3+2^2\left(1+2\right)+...+2^{2020}\left(1+2\right)\)

\(\Leftrightarrow S=3+2^2\times3+...+2^{2020}\times3\)

\(\Leftrightarrow S=3\left(1+2^2+...+2^{2020}\right)\)

\(\Rightarrow S⋮3\left(đpcm\right)\)

Vui vui
Xem chi tiết
hanvu
1 tháng 3 2020 lúc 12:32

S đâu ra vậy,ko hiểu đề lắm

Khách vãng lai đã xóa
nguyễn thị hải yến
1 tháng 3 2020 lúc 13:11

tự làm đi dễ thế này rồi đó....

Khách vãng lai đã xóa
Vũ Hải Anh
Xem chi tiết
Văn Tùng Trương (Mr Flas...
5 tháng 4 lúc 20:03

Ta có: S = \(\dfrac{1}{3}+\dfrac{3}{3.7}+\dfrac{5}{3.7.11}+...+\dfrac{2n+1}{3.7.11...\left(4n+3\right)}\)

⇒ 2S = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{10}{3.7.11}+...+\dfrac{4n+2}{3.7.11...\left(4n+3\right)}\)

⇒ 2S + \(\dfrac{1}{3.7.11...\left(4n+3\right)}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{10}{3.7.11}+...+\dfrac{4n+3}{3.7.11...\left(4n+3\right)}\)

Đến đây nó sẽ rút gọn liên tục và sau nhiều lần rút gọn ta có:

2S + \(\dfrac{1}{3.7.11...\left(4n+3\right)}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{10}{3.7.11}+\dfrac{1}{3.7.11}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{11}{3.7.11}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{1}{3.7}\) = \(\dfrac{2}{3}+\dfrac{7}{3.7}=\dfrac{2}{3}+\dfrac{1}{3}=1\)

Suy ra 2S < 1 ⇒ S < \(\dfrac{1}{2}\)(đpcm)

Cao Thùy Linh
Xem chi tiết
Akai Haruma
27 tháng 4 2023 lúc 23:22

Lời giải:
Xét tử số:
$X=1+2+2^2+2^3+...+2^{2008}$

$2X=2+2^2+2^3+2^4+....+2^{2009}$

$\Rightarrow 2X-X=(2+2^2+2^3+2^4+....+2^{2009})-(1+2+2^2+...+2^{2008})$

$\Rightarrow X=2^{2009}-1$

$\Rightarrow S=\frac{X}{1-2^{2009}}=\frac{2^{2009}-1}{-(2^{2009}-1)}=-1$

Trần Cherry
Xem chi tiết
BÙI BẢO KHÁNH
Xem chi tiết
Toru
21 tháng 10 2023 lúc 14:26

\(M=2+2^2+2^3+...+2^{20}\\=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^{19}+2^{20})\\=6+2^2\cdot(2+2^2)+2^4\cdot(2+2^2)+...+2^{18}\cdot(2+2^2)\\=6+2^2\cdot6+2^4\cdot6+...+2^{18}\cdot6\\=6\cdot(1+2^2+2^4+...+2^{18})\)

Vì \(6\cdot(1+2^2+2^4+...+2^{18})\vdots6\)

nên \(M\vdots6\)

Vậy \(M\vdots6\).