CMR:S=1+3+32+...+32011chia hết cho 4
Cho S= \(\frac{1}{3}+\frac{1}{4}+...+\frac{1}{32}.\)\(CMR:S>2\)
Lm ơn giúp tớ vs, tớ tk cho!!!!!!
Cho S= 3+32+33+.....+31998
a)CMR:S chia hết cho 12
b)CMR:S chia hết cho 39
Cho S= \(\frac{1}{3}+\frac{1}{4}+...+\frac{1}{32}.\)\(CMR:S>2\)
giúp tớ vs, tớ tk cho, mai tớ nộ rồi!!!!!!!!!!!!!
Ta có
\(S=\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{16}\right)+\left(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{32}\right)\)
\(S>\frac{1}{4}.2+\frac{1}{8}.4+\frac{1}{16}.8+\frac{1}{32}.16=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{1}{2}.4=2\)
Vậy S>2
Cho S = 3 + 3\(^2\) + 3\(^3\) + 3\(^4\) + 3 \(^5\) + .......+3\(^{99}\) + 3\(^{100}\)
a) CMR:S CHIA HẾT 4
B) CMR:S CHIA HẾT 120
\(S=3+3^2+3^3+3^4+3^5+.....+3^{99}+3^{100}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+......+\left(3^{99}+3^{100}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+.......+3^{99}\left(1+3\right)\)
\(=\left(1+3\right)\left(3+3^3+....+3^{99}\right)\)
\(=4\left(3+3^3+.....+3^{99}\right)\)chia hết cho ( đpcm )
\(s=\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(s=3\left(1+3+3^2+3^3\right)+...+3^{97}\left(1+3+3^2+3^3\right)\)
\(s=\left(1+3+3^2+3^3\right).\left(3+...+3^{97}\right)\)
\(s=120.\left(3+...+3^{97}\right)\)
\(\Rightarrow\)s chia hết cho 120
cho S=3^0+3^2+3^4+3^6+........+3^2002
tính S
cmr:S chỉ hết cho 7
S = 30 + 32 + 34 + .... + 32002
Nhân cả hai vế của S với 32 ta được :
32S = 32 ( 30 + 32 + 34 + .... + 32002 )
= 32 + 34 + 36 + ..... + 32004
Trừ cả hai vế của 32S cho S ta được :
32S - S = ( 32 + 34 + 36 + ..... + 32004 ) - ( 30 + 32 + 34 + .... + 32002 )
8S = 32004 - 1
\(\Rightarrow S=\frac{3^{2004}-1}{8}\)
olm.vn/hoi-dap/question/102201.html
Bạn kham khảo tại đường link trên .
Cho S=1-3+32-33+...............+398-399
CMR:S chia hết cho (-20)
S=1-3+32-...+398-399
=(1-3+32-33)+...+(396-397+398-399)
=-20+...+396.(-20)
=-20.(1+....+396)
nên S chhia hết cho(-20) (đpcm)
=>(1-3+32-33)+...+(396-397+398-399)
=> -20+...+396.(-20)
=>-20.(1+....+396)
Nên S chhia hết cho(-20) (đpcm)
tick nhé
CMR:S=1+3+32+.....+32011 chia het cho 4
Cmr:S=1/4^1+1/4^2+....+1/4^2017<1/3
\(S=\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2017}}\)
\(4S=1+\frac{1}{4}+...+\frac{1}{4^{2016}}\)
\(4S-S=\left(1+\frac{1}{4^1}+...+\frac{1}{4^{2016}}\right)-\left(\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2017}}\right)\)
\(3S=1-\frac{1}{4^{2017}}< 1\)
\(\Rightarrow S< \frac{1}{3}\left(đpcm\right)\)
CMR:S=(1999+19992+19993+.......19991998)chia hết cho 2000