CMR Trong Δ cân ABC (AB=AC).Phân giác BE,CD ứng với 2 cạnh bên thì bằng nhau(CM BE=CD)
Cho hình thang ABCD (AB//CD)
a) CMR nếu hai tia phân giác của hai góc A và D cùng đi qua trung điểm của cạnh bên BC thì cạnh bên AD bằng tổng hai đáy
b)CMR nếu AD=AB+CD thì hai tia phân giác của hai góc A và D cắt nhau tại trung điểm của cạnh bên BC
c)tam giác cân ABC(AB=AC) kẻ đường phân giác AD của góc A trên AD lấy điểm O. Tia BO cắt AC ở E, tia CO cắt AB ở F. Chứng minh rằng tứ giác BFEC là hình thang cân
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Trần Nhật Duy - Toán lớp 8 - Học toán với OnlineMath
cho tam giác ABC có AB=AC. Lấy D trên cạnh AB, E trên cạnh AC: AD= AE
a; cmr: BE=CD
b; Gọi O là giao điểm của BE và CD
cmr : các tam giác BOD và tam giác COE bằng nhau
Cho Tam giác ABC cân tại A. Lấy điểm D thuộc cạnh AB và điểm E thuộc cạnh AC sao cho AD=AE. Gọi K là giao điểm của BE và CD. CM rằng BE=CD; tam giác KBD= KCE; CD<AB+BC/2
a)
Xét tam giác ADC và tam giác AEB có :
AD = AE (GT)
Góc A chung
AC = AB ( vì tam giác ABC cân )
từ 3 điều trên => tam giác ADC = tam giác AEB (c-g-c )
=> DC= BE ( cặp cạnh tương ứng )
b) vì tam giác ADC = tan giác AEB ( câu a )
=> góc ABE = góc ACD ( cặp góc tương ứng )
ta có : tam giác ABC cân => AB = AC (1)
và AD = AE (GT ) (2)
từ (1) và (2) => BD = CE
Xét tam giác KBD và tam giác KCE Có :
góc DKB = góc EKC ( 2 góc đối đỉnh )
BD = CE ( chứng minh trên )
Góc DKB = góc EKC ( đối đỉnh )
từ 3 điều trên => tam giác KBD = tam giác KCE ( g-c-g )
Ta có : (AB + AC ) : 2 = AC
mà AB =AC
Xét tam giác ADC :
Vì D thuộc đoạn AB
Mà AB = AC
=> AC > AD
=> AC > CD ( theo quan hệ giữa các đường đồng quy trong tam giác )
=>( AC + AB ) : 2 > CD ( đpcm)
Bài 1: Cho tam giác ABC.Trên AC lấy 1 điểm B' sao cho AB'=AB, trên AC lấy điểm C' sao cho AC'=AC. CMR tứ giác BB'CC' là hình thang.
Bài 2:CMR: nếu 1 tứ giác có phân giác trong của hai góc kề với một cạnh vuông góc với nhau thì tứ giác đó là hình thang.
Bài 3: Cho hình thang ABCD(AB//CD). Hai đường phân giác của góc A và B cắt nhau tại điểm K thuộc cạnh đáy CD:. CM AD+BC=CD.
Bài 4: a)Tính số đo của các góc trong tứ giác ABCD, biết góc A:góc B:góc C:góc D=2:2:1:1.
b)Tứ giác ABCD là hình gì?Vì sao?
Bài 5:Cho tam giác ABC cân tại A. Kẻ các phân giác BD,CE của các góc B và C.
a)Cm: Tam giác ADB= tam giác AEC.
b)Cm: Tứ giác BEDC là hình thang cân có cạnh bên bằng 1/2 đáy.
Bài 6:Cho tam giác ABC vuông tại A có góc ABC=60 độ. Kẻ tia Ax song song với BC.Trên tia Ax lấy điểm D sao cho AD=BC.
a) Tính số đo các góc BAD và BAC.
b)Cm tứ giác ABCD là hình thang cân.
Mình đang cần gấp nên mong các bạn giải giùm mình. ^-^
Bài 1:
a.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = 1800 - D = 1800 - 540 = 1260
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 - C = 1800 - 1050 = 750
b.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = (1800 - 320) : 2 = 740
=> D = 1800 - 740 = 1060
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 : (1 + 2) . 2 = 1200
=> C = 1800 - 1200 = 600
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
Cho tam giác ABC cân tại A. Lấy điểm D thuộc cạnh AB, E thuộc cạnh AC sao cho AD = AE.
a) Chứng minh BE = CD.
b) Gọi K là giao điểm của BE và CD. Chứng minh tam giác KBC cân.
c) Chứng minh AK là tia phân giác góc A.
d) Kéo dài AK cắt BC tại H. Cho AB =5 cm, BC = 6 cm. Tính độ dài AH.
LÀM ƠN GIÚP VỚI!
1, tam giác ABC phân giác AD, trung tuyến AM đường tròn (O) đi qua ADM giao AB;AC ở E,F
a,so sánh BE và CF
b, A=90 độ cm: căn (2)/AD=1/AB + 1/AC
2,cho góc xOy trên Ox lấy AB ;Oy lấy CD sao cho AB=CD. M,N là trung điểm của AC; BD
cmr MN // phân giác xOy
3, tam giác ABC cân tại A. đường cao AH, HE vuông góc AC, AI vuông góc BE (I thuộc BE); AI căt HE tại M
cm: MH=ME
Cho tam giác ABC, tia phân giác BE VÀ CD LẦN LƯỢT LÀ CÁC TIA PHÂN GIÁC CỦA GÓC B,C(E THUỘC AC,D THUỘC AB) SAO CHO BE=CD. CM: TAM GIÁC ABC LÀ TAM GIÁC CÂN
cho tam giác ABC cân tại A, trên cạnh Ab lấy điểm d Tren Ac lấy diểm E sao cho AD=AE. Gọi M là giao điểm BE và CD
CMR : a, BE=CD b, tam giác BMD = TAM GIÁC CME C, AM là phân giác BAC giải giúp mik với ... kẻ giao điểm như thế nào vậy ?
Cho tg ABC cân tại A. Điểm DG cạnh AB, điểm EG cạnh AC sao cgi AD = AE. Gọi K là giao điểm của BE và CD. CMR:
A) BE=CD
B) TG KBD = TG KCE
C) AK phân giác góc A
D) TG KBC LÀ TG CÂN