thực hiện phép tính: 1/2.3 + 1/3.4 + 1/4.5 + ... + 1/95.96
A= 1/3.4+ 1/4.5+1/5.6+...+1/95.96
A=1/3-1/4+1/4-1/5+....+1/95-1/96
=1/3-1/96=31/96
1/3-1/4+1/4-1/5+1/5-1/6+......+1/95-1/96
1/3-1/96
32-1/96
31/96
B=1/3.4+1/4.5+1/5.6+....+1/95.96
B=1/3-1/4+1/4-1/5+...+1/95-1/96
B=1/3-1/96
B=31/96
Giúp mình vs, mik cần gấp lắm
Thực hiện các phép tính sau:
a) (1-2/2.3)(1-2/3.4)(1-2/4.5)...(1-2/99.100)
b) (1-1/2^2)(1-1/3^2)(1-1/4^2)...(1-1/n^2)
tính
\(A=1\frac{1}{1.2}+1\frac{1}{2.3}+1\frac{1}{3.4}+...+1\frac{1}{95.96}\)
Dãy số trên có tất cả số 1 là :
[ ( 96 - 1 ) : 1 + 1 ] : 2 = 48 ( số )
TA có :
( 1 + 1 + 1 + ... + 1 ) + \(\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{95.96}\right)\)
= 48 + \(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{95}-\frac{1}{96}\right)\)
= 48 + \(\left(1-\frac{1}{96}\right)\)
= 48 + \(\frac{95}{96}\)
= \(48\frac{95}{96}\)
TK nha !
Bài 1: Thực hiện các phép tính:
d) 3,15+2,4=5,55
e) \(\dfrac{5}{7}.\dfrac{2}{11}+\dfrac{5}{7}.\dfrac{9}{11}\)
f) 1,25.3,6+3,6.8,75
h) B= \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
d, `3,15+2,4=5,55`
e, \(\dfrac{5}{7}.\dfrac{2}{11}+\dfrac{5}{7}.\dfrac{9}{11}=\dfrac{5}{7}\left(\dfrac{2}{11}+\dfrac{9}{11}\right)=\dfrac{5}{7}.\dfrac{11}{11}=\dfrac{5}{7}.1=\dfrac{5}{7}\)
f, `1,25.3,6+3,6.8,75=3,6(1,25+8,75)=3,6.10=36`
\(h,\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}\\ =\dfrac{99}{100}\)
\(e\dfrac{5}{7}\times\left(\dfrac{2}{11}+\dfrac{9}{11}\right)=\dfrac{5}{7}\times1=\dfrac{5}{7}\)
\(f3.6\times\left(1.25+8.75\right)=3.6\times10=36\)
thực hiện phép tính
P=1/51+1/52+...+1/100 \ 1/1.2+1/3.4+1/4.5+...+1/99.100
Thực hiện phép tính
-1-(1+2)-(1+2+3)-...-(1+2+3+...+2009+2010)/1.2+2.3+3.4+...+2010.2011
THỰC HIỆN PHÉP TÍNH:\(A=\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)
\(A=\frac{1}{2}+\frac{1}{2.3}+..+\frac{1}{2017.2018}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(A=1-\frac{1}{2018}\)
\(A=\frac{2018}{2018}-\frac{1}{2018}\)
\(A=\frac{2017}{2018}\)
hok tốt!!
Thực hiện phép tính:
\(A=3.\dfrac{1}{1.2}-5.\dfrac{1}{2.3}+7.\dfrac{1}{3.4}-...+15.\dfrac{1}{7.8}-17.\dfrac{1}{8.9}\)