Tìm tổng các ước số dương của số 1092
Tìm tổng các ước dương của một số thì làm thế nào?
tách số đó ra thừa số nguyên tố rồi tính tích của các số mũ cộng thêm một của mỗi thừa số là ra.tik bạn nhé
với mỗi số nguyên dương n, ta kí hiệu d(n) là số các ước nguyên dương của n và s(n) là tổng tất cả các ước nguyên dương đó .Chẳng hạn d(2018) = 4 vì 2018 có và chỉ có 4 ước Nguyên Dương là 1;2;1009; 2018 và s (2018) = 1 + 2 + 1009 + 2018 = 3030 Tìm tất cả các số nguyên dương x sao cho s(x).d(x)= 96
Vào đây tham khảo nha ! : Câu hỏi của Phạm Chí Cường - Toán lớp 6 | Học trực tuyến
Với mỗi số nguyên dương n, ta kí hiệu d(n) là số các ước nguyên dương của n và s(n) là tổng tất cả các ước nguyên dương đó. Ví dụ, d(2018) = 4 vì 2018 có (và chỉ có) 4 ước nguyên dương là 1; 2; 1009; 2018 và s(2018) = 1 + 2 + 1009 + 2018 = 3030. Tìm tất cả các số nguyên dương x sao cho s(x) . d(x) = 96
Cho \(A=p^4\) trong đó \(p\) là số nguyên tố. Tìm các giá trị của \(p\) để tổng các ước dương của \(A\) là số chính phương.
Số p4 có 5 ước số tự nhiên là 1 , p, p2 , p3 , p4
Ta có : 1 + p + p2 + p3 + p4 = n2 (n ∈ N)
Suy ra : 4n2 = 4p4 + 4p3 + 4p2 + 4p + 4 > 4p4 + 4p3 + p2 = (2p2 + p)2
Và 4n2 < 4p4 + p2 + 4 + 4p3 + 8p2 + 4p = (2p2 + p + 2)2.
Vậy : (2p2 + p)2 < (2n)2 < (2p2 + p + 2)2.
Suy ra :(2n)2 = (2p2 + p + 2)2 = 4p4 + 4p3 +5p2 + 2p + 1
vậy 4p4 + 4p3 +5p2 + 2p + 1 = 4p4 + 4p3 +4p2 +4p + 4 (vì cùng bằng 4n2 )
=> p2 - 2p - 3 = 0 => (p + 1) (p - 3) = 0
do p > 1 => p - 3 = 0 => p = 3
Viết chương trình nhập từ bàn phím một số nguyên dương N (1<= N < 1000) in ra màn hình các thông tin sau :
a) Số các ước số nguyên dương của số N
b) Tổng các ước số nguyên dương của N
(m.n giúp em với)
#include <bits/stdc++.h>
using namespace std;
long n,i,dem,t;
int main()
{
cin>>n;
dem=0;
t=0;
for (i=1; i<=n;i++)
if (n%i==0)
{
dem++;
t=t+i;
}
cout<<dem<<" "<<t;
return 0;
}
Cho p là một số nguyên tố. Tìm p để tổng các ước nguyên dương của \(p^4\) là một số chính phương
Do p là SNT nên \(p^4\) chỉ có các ước nguyên dương là \(1;p;p^2;p^3;p^4\)
\(\Rightarrow1+p+p^2+p^3+p^4=k^2\) với \(k\in N\)
\(\Rightarrow\left(2k\right)^2=4p^4+4p^3+4p^2+4p+4=\left(2p^2+p\right)^2+\left(3p^2+4p+4\right)>\left(2p^2+p\right)^2\)
Đồng thời: \(4p^4+4p^3+4p^2+4p+4=\left(2p^2+p+2\right)^2-5p^2< \left(2p^2+p+2\right)^2\)
\(\Rightarrow\left(2p^2+p\right)^2< \left(2k\right)^2< \left(2p^2+p+2\right)^2\)
\(\Rightarrow\left(2k\right)^2=\left(2p^2+p+1\right)^2\)
\(\Rightarrow4p^4+4p^3+4p^2+4p+4=\left(2p^2+p+1\right)^2\)
\(\Rightarrow p^2-2p-3=0\Rightarrow\left[{}\begin{matrix}p=-1\left(ktm\right)\\p=3\left(tm\right)\end{matrix}\right.\)
a) Số nguyên a được gọi là số hoàn thiện khi và chỉ khi tổng các ước dương của a (trừ ước a) bằng chính nó. Ví dụ 6 là số hoàn chỉnh vì 6 có các ước là 1,2,3 và tổng các ước là 1+2+3=6. Viết trương chình nhập vào số dương n từ bàn phím (0≤ n ≤ 1000). In lên màn hình tất cả các số hoàn chỉnh dương nhỏ hơn hoặc bằng n.
b)Trong toán học n! (đọc là giai thừa) dược định nghĩa như sau:
Qui ước: 0!=1
n!=1.2.3...n
Vd: 4!=1.2.3.4=24
Viết trương trình nhập từ bàn phím số nguyên n (0≤ n ≤ 20). Tính và in lên màn hình n!
a)
uses crt;
var n,i,t,j:integer;
begin
clrscr;
write('Nhap n='); readln(n);
for i:=1 to n do
begin
t:=0;
for j:=1 to i-1 do
if i mod j=0 then t:=t+j;
if t=i then write(i:4);
end;
readln;
end.
b)
uses crt;
var gt:real;
i,n:integer;
begin
clrscr;
write('Nhap n='); readln(n);
gt:=1;
for i:=1 to n do
gt:=gt*i;
writeln(gt:0:0);
readln;
end.
Cho p là số nguyên tố lẻ. Tìm p biết tổng các ước dương của lũy thừa bậc 4 của p là số chính phương
Cho p là một số nguyên tố . Tìm p để tổng các ước nguyên dương của p4 là một số chính phương
Vì \(p\)là số nguyên tổ nên tổng các ước nguyên dương của \(p^4\)là \(1+p+p^2+p^3+p^4\).
Đặt \(p^4+p^3+p^2+p+1=n^2\)
\(\Leftrightarrow4p^4+4p^3+4p^2+4p+1=4n^2\)
Ta có:
\(4p^4+4p^3+4p^2+4p+4>4p^4+4p^3+p^2=\left(2p^2+p\right)^2\)
\(4p^4+4p^3+4p^2+4p+4< 4p^4+4p^3+9p^2+4p+4=\left(2p^2+p+2\right)^2\)
Suy ra \(\left(2p^2+p\right)^2< 4n^2< \left(2p^2+p+2\right)^2\)
\(\Rightarrow\left(2n\right)^2=\left(2p^2+p+1\right)^2=4p^4+4p^3+5p^2+2p+1\)
\(\Rightarrow p^2-2p-3=0\)
\(\Leftrightarrow\left(p+1\right)\left(p-3\right)=0\)
\(\Rightarrow p=3\)thỏa mãn.
Vậy \(p=3\).