Cho tam giác ABC cân tại A (Bc > AB) đường trung tuyến AI và trọng tâm G
a.Biết AB=5cm;BC =8cm .tính AI và BG
b,Trên tia đối của tia AC lấy điểm M sao cho AM=AB.Trên tia đối của tia CA lấy điểm N sao cho CN=CB.C/M BN>BM
Cho tam giác ABC cân tại A (Bc > AB) đường trung tuyến AI và trọng tâm G
a.Biết AB=5cm;BC =8cm .tính AI và BG
Mình quên còn ý b . Trên tia đối của tia AC lấy điểm M sao cho AM =AB.Trên tia đối của tia CA lấy điểm N sao cho BC=CN. CM BN>BM
Cho tam giác ABC cân tại A, AB=5cm, BC=8cm, đường trung tuyến AM trọng tâm G. Tính AG
Cho tam giác ABC cân tại A ( với BC>AB ) có đường trung tuyến AI và trọng tâm G
a) Biết : AB = 5cm , BC = 8cm.Tính độ dài AI , BG
b) Trên tia đối của tia AC lấy điểm M sao cho AM = AB . Trên tia đối của tia CA lấy điểm N sao cho CN = CB.Chứng minh BN > BM
Cho tam giác ABC cân ở A có đường phân giác AD (D thuộc BC) và đường trung tuyến BE (E thuộc AC) cắt nhau tại O
a) Chúng minh O là trọng tâm tam giác ABC
b) Tính độ dài OD biết AB = 5cm, BC = 8cm
c) Tam giác ABC cần có thêm điều kiện gì để O cũng là giao điểm 3 đường phân giác của tam giác ABC?
a) Xét ΔABD và ΔACD có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))
AD chung
Do đó: ΔABD=ΔACD(c-g-c)
Suy ra: BD=CD(hai cạnh tương ứng)
mà B,D,C thẳng hàng(gt)
nên D là trung điểm của BC
Xét ΔABC có
AD là đường trung tuyến ứng với cạnh BC(cmt)
BE là đường trung tuyến ứng với cạnh BC(gt)
AD cắt BE tại O(gt)
Do đó: O là trọng tâm của ΔABC(Định lí ba đường trung tuyến của tam giác)
b) Ta có: D là trung điểm của BC(cmt)
nên \(BD=CD=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)
Ta có: ΔABD=ΔACD(cmt)
nên \(\widehat{ADB}=\widehat{ADC}\)(hai góc tương ứng)
mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)
nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)
Áp dụng định lí Pytago vào ΔABD vuông tại D, ta được:
\(AB^2=AD^2+BD^2\)
\(\Leftrightarrow AD^2=5^2-4^2=25-16=9\)
hay AD=3(cm)
Xét ΔABC có
AD là đường trung tuyến ứng với cạnh CB(cmt)
O là trọng tâm của ΔABC(cmt)
Do đó: \(OD=\dfrac{1}{3}AD\)(Tính chất trọng tâm của tam giác)
hay OD=1(cm)
Vậy: OD=1cm
c) Xét ΔABC có
O là giao điểm của 3 đường phân giác
O là giao điểm của 3 đường trung tuyến
Do đó: ΔABC đều
Cho tam giác ABC cân tại A có góc A nhỏ hơn 90 độ AB = 15 BC = 18 đường phân giác và đường trung tuyến BD của tam giác ABC cắt nhau tại I
CMR i là trọng tâm của tam giác ABC
tính AI
ko biet toi moi lop 5 thoi
1) tam giác ABC có các đường trung tuyến BD và CE bằng nhau . chứng minh rằng tam giác ABC là tam giác cân.
2)cho tam giác ABC cân ở A , AB=34cm , BC =32cm , và 3 trung tuyến AM , BN , CP đồng quy tại trọng tâm G
a) chúng minh AM vuông góc với
b) tính độ dài AM , BN ,CP (làm trong kết quả đến chữ số thập phân thứ 2)
câu 2 :
a) có phải là chứng minh AM ⊥ BC không
xét ΔAMB và ΔAMC, ta có :
AB = AC (2 cạnh bên của ΔABC cân tại A)
MB = MC (AM là đường trung tuyến của cạnh BC)
AM là cạnh chung
=> ΔAMB = ΔAMC (c.c.c)
=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)
mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)
=> AM ⊥ BC
Cho tam giác ABC cân tại A. có AB = AC = 34 cm, BC = 32 cm. Từ A vẽ AH song song BC tại H.
a) Chứng minh tam ABH= tam giác ACH
b) Vẽ đường trung tuyến BM của tam giác ABC, BM cắt AH tại G. Chứng minh AH là đường trung tuyến và G là trọng tâm tam giác ABC
Cho tam giác ABC cân tại A .Đường trung tuyến AM .
a.CMR tam giác ABM=tam giác ACM.
b.Cmr AM là đường trung trực của BC.
c.Kẻ các đương trung tuến BE VÀ CF,D là trọng tâm của tam giác ABC
CMR EF SONG SONG VS BC
d Cho AB=10.Bc=12.Tìm AM và AD
e. CMR AB+2BE=AB+BC
a) Mk cm trường hợp = nhau c.c.c nhé ! trường hợp c.g.c cũng có thể làm đó bn
Do tam giác ABC cân tại A => AB=AC
\(\widehat{B}=\widehat{C}\)
Do AM là đường trung tuyến ứng vs cạnh BC => BM=CM
Xét tam giác ABM và tam giác ACM có :
AB = AC ( cm trên )
AM là cạnh chung
BM=CM ( cm trên )
nên tam giác ABM = tam giác ACM
b) Do tam giác ABC cân tại A và có AM là đường trung tuyến => AM cũng là đường trung trực của tam giác ABC ( theo t/c tam giác cân )
( hoặc bn cũng có thể cm cách khác nhưng dài hơn , cách này ngắn nhất đó ! )
tự ke hình
a)Xét ABM va ACM
có AB=AC
Am:chung
BM=CM
suy ra ABM=ACM (c-c-c)
b)Ta co gocAMB= goc AMC(do ABM=ACM)
Mà AMB+AMC=180 do (ke bu)
suy ra AMB=AMC=90 do
suy ra AM vuong goc voi BC
mà BM=CM (gt)
suy ra : dpcm
c) Gọi D là giao diem cua CF va BE
xet ABD va ACD
có AB=AC
AD :chung
BAD=CAD(do ABM=ACM)
suy ra BD=CD
ABD=ACD
XEt tam giac BFD=tam giac CED
suy ra BE=CE
ma BF=FA, CE=AE)
suy ra AF=AE suy ra AFE can tai
Bay gio ta CM cho góc C= goc AEF
thi suy ra đpcm
d)AM=8cm
AD=16/3
Chi tam giác ABC cân ở A có đường phân giác AD (D thuộc BC) và đường trung tuyến BE (E thuộc AC) cắt nhau tại O
a) Chúng minh O là trọng tâm tam giác ABC
b) Tính độ dài OD biết AB = 5cm, BC = 8cm
c) Tam giác ABC cần có thêm điều kiện gì để O cũng là giao điểm 3 đường phân giác của tam giác ABC?
Bạn tự kẻ hình nhé .
a)Vì AD là phân giác của \(\Delta ABC\)cân tại A
\(\Rightarrow AD\)là trung tuyến của \(\Delta ABC\)
Xét \(\Delta ABC\),có:
AD,BE là hai đường trung tuyến
O là giao điểm của AD và BE
\(\Rightarrow O\)là trọng tâm của \(\Delta ABC\)
b)Vì AD là trung tuyến của \(\Delta ABC\)
\(\Rightarrow D\)là trung điểm của BC
\(\Rightarrow BD=\frac{BC}{2}=\frac{8}{2}=4\left(cm\right)\)
Vì AD là phân giác của \(\Delta ABC\)cân tại A
\(\Rightarrow AD\)là đường cao của \(\Delta ABC\)
Áp dụng định lí Pytago cho \(\Delta ABD\)vuông tại D ,có:
\(AD^2=AB^2-BD^2=5^2-4^2=9\)
\(\Rightarrow AD=\sqrt{9}=3\left(cm\right)\)
Vì O là trọng tâm của \(\Delta ABC\)
\(\Rightarrow OD=\frac{1}{3}AD=\frac{1}{3}.3=1\left(cm\right)\)
c)Để O là giao điểm của 3 đường phân giác của \(\Delta ABC\)
thì \(BE\)là phân giác của \(\Delta ABC\)
mà BE là đường trung tuyến của \(\Delta ABC\)
\(\Leftrightarrow\Delta ABC\)đều .