Tìm n nguyên để n^4+2n^3+5n^2 là bình phương của một số nguyên
Tìm n nguyên để n^4+2n^3+5n^2 là bình phương của một số
help me mai thi =(((
okey :v
\(n^4+2n^3+5n^2\text{ là bình phương của 1 số}\Leftrightarrow n^2\left(n^2+2n+5\right)\text{ là bình phương của 1 số}\)
mà n nguyên do đó:
\(n^2+2n+5\text{ là bình phương của 1 số nguyên}\Rightarrow\left(n+1\right)^2+4=k^2\left(k\text{ nguyên}\right)\)
đến đây ez
Tìm số tự nhiên n để biểu thức C=2n+2/n+2 + 5n+17/n+2 - 3n/n+2 là số tự nhiên
Cho phân số P=n+4/2n-1 với n thuộc Z. tìm số nguyên n để giá trị của P là số nguyên tố
Cho phân số M=n+1/n-1.Với giá trị nào của n thì M là một số chẵn?Một số nguyên âm?
Tìm các số nguyên n để các phânsố sau có giá trị là một số nguyên:
a) n − 5 n − 3
b) 2 n + 1 n + 1
a) Học sinh tự làm
b) 2 n + 1 n + 1 ( n ≠ − 1 ) có giá trị là số nguyên khi (2n +1) ⋮ (n +1) hay [2(n +1) -1] ⋮ (n +1)
Từ đó suy ra 1 ⋮ (n +1)
Do đó n ∈ {- 2;0).
a) Tìm số nguyên n sao cho n2+5n+9 là bội của n+3
b) Chứng minh rằng bình phương của một số nguyên khác 2 và 3 khi chia cho 12 đều dư 1
tìm số nguyên n để GTBT \(n^4+2n^3+5n^2\)
Cho số nguyên dương n thỏa mãn 6n2+5n+1 là số chính phương
a) Chứng minh n chia hết cho 40
b) Chứng minh 5n+3 là hợp số
c) Tìm n nguyên dương sao cho 2n+9 là số nguyên tố
Tìm tất cả các số nguyên dương n để số A = 2n + 3n + 4n là bình phương của một số nguyên.
tìm n thuộc z để giá trị tuyệt đối của A= 2n^2+5n-3 nhận giá trị là số nguyên tố
Với n thuộc Z
Có: \(A=2n^2+5n-3=2n^2+6n-n-3=2n\left(n+3\right)-\left(n+3\right)=\left(2n-1\right)\left(n+3\right)\)
=> \(\left|A\right|=\left|\left(n+3\right)\left(2n-1\right)\right|\)
Để | A | là số nguyên tố \(n+3=\pm1\)hoặc \(2n-1=\pm1\)
+) Với n + 3 = 1 => n =-2 => | A | = 5 là số nguyên tố => n = - 2 thỏa mãn.
+) Với n + 3 = - 1 => n = - 4 => | A | = 9 không là số nguyên tố => loại
+) Với 2n -1 = 1 => n =1 => |A | = 4 loại
+) Với 2n -1 =-1 => n = 0 => | A | = 3 là số nguyên tố => n = 0 thỏa mãn.
Vậy n=-2 hoặc n =0.
tìm n thuộc z để giá trị tuyệt đối của A= 2n^2+5n-3 nhận giá trị là số nguyên tố