So sánh A và B biết A= 2009/2010 + 2010 và B= 2009+2010/2010+2011
So sánh A và B biết: A= \(\dfrac{2008+2008+2010}{2009+2010+2011}\) và B= \(\dfrac{2008}{2009}\)+ \(\dfrac{2009}{2010}\)+ \(\dfrac{2010}{2011}\)
A = \(\dfrac{2008}{2009+2010+2011}+\dfrac{2009}{2009+2010+2011}+\dfrac{2010}{2009+2010+2011}\)
Ta có:
\(\dfrac{2008}{2009}>\dfrac{2008}{2009+2010+2011}\)
\(\dfrac{2009}{2010}>\dfrac{2009}{2009+2010+2011}\)
\(\dfrac{2010}{2011}>\dfrac{2010}{2009+2010+2011}\)
Từ 3 điều trên suy ra : A < B
so sánh A và B với A=2008/2009 +2009/2010 +2010/2011 và B= (2008+2009+2010) / (2009+2010+2011)
mình cũng có bài giống như này nhưng chưa làm được
Ta có: 2008/2009 > 2008/2009+2010+2011
2009/2010> 2009/2010+2011
2010/2011>2010>2010/2009+2010+2011
Suy ra: A>2008+2009+2010/2009+2010+2011
Vậy A >B
so sánh A và B với A=2008/2009 +2009/2010 +2010/2011 và B= 2008+2009+2010 / 2009+2010+2011
Tớ cũng có bài này nhưng chưa làm được
cau tra loi la 50 khong can biet lam the nao
Bài 2 : So sánh
A=2008/2009+2009+2010+2010+2011 và B=2008+20092+2010/2009+2010+2011
So sánh A và B biết
A=\(\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}\)
B=\(\frac{2009+2010+2011}{2010+2011+2012}\)
A=2.998508205
B=0.999502735
suy ra A>B
Bài giải
Theo bài ra :
\(A=\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}\)
\(B=\frac{2009+2010+2011}{2010+2011+2012}=\frac{2009}{2010+2011+2012}+\frac{2010}{2010+2011+2012}+\frac{2011}{2010+2011+2012}\)
Ta có :
\(\frac{2009}{2010}>\frac{2009}{2010+2011+2012}\)
\(\frac{2010}{2011}>\frac{2010}{2010+2011+2012}\)
\(\frac{2011}{2012}>\frac{2011}{2010+2011+2012}\)
\(\Rightarrow\text{ }\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}>\frac{2009}{2010+2011+2012}+\frac{2010}{2010+2011+2012}+\frac{2011}{2010+2011+2012}\)
\(\Rightarrow\text{ }A>B\)
Bài giải
Theo bài ra :
\(A=\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}\)
\(B=\frac{2009+2010+2011}{2010+2011+2012}=\frac{2009}{2010+2011+2012}+\frac{2010}{2010+2011+2012}+\frac{2011}{2010+2011+2012}\)
Ta có :
\(\frac{2009}{2010}>\frac{2009}{2010+2011+2012}\)
\(\frac{2010}{2011}>\frac{2010}{2010+2011+2012}\)
\(\frac{2011}{2012}>\frac{2011}{2010+2011+2012}\)
\(\Rightarrow\text{ }\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}>\frac{2009}{2010+2011+2012}+\frac{2010}{2010+2011+2012}+\frac{2011}{2010+2011+2012}\)
\(\Rightarrow\text{ }A>B\)
a) Chứng tỏ rằng: 1/41+1/42+1/43+...+1/80 > 7/12
b) So sánh: A=2008/2009+2009/2010+2010/2011 VÀ B=2008+2009+2010/2009+2010+2011
\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+.....+\frac{1}{80}\)
\(=\left(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+\frac{1}{44}+.....+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+......+\frac{1}{80}\right)\)
\(>\left(\frac{1}{60}+\frac{1}{60}+\frac{1}{60}+.....+\frac{1}{60}\right)+\left(\frac{1}{80}+\frac{1}{80}+\frac{1}{80}+.....+\frac{1}{80}\right)\)
\(=\frac{1}{3}+\frac{1}{4}\)
\(=\frac{7}{12}\)
\(B=\frac{2008+2009+2010}{2009+2010+2011}=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
\(< \frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}=A\)
So sánh A=2009^2009+1/2009^2010+1 và B=2009^2010-2/2009^2011-2
So sánh: A=2009^2009+1/2009^2010+1 và B=2009^2010-2/2009^2011-2
So Sánh : A = \(\dfrac{2009^{2009}+1}{2009^{2010}+1}\) và B = \(\dfrac{2009^{2010}-2}{2009^{2011}-2}\)
Ta có :
\(B=\dfrac{2009^{2010}-2}{2009^{2011}-2}< 1\)
\(\Leftrightarrow B< \dfrac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\dfrac{2009^{2010}+2009}{2009^{2011}+2009}=\dfrac{2009\left(2009^{2009}+1\right)}{2009\left(2009^{2010}+1\right)}=\dfrac{2009^{2009}+1}{2009^{2010}+1}=A\)
\(\Leftrightarrow A>B\)