x/y=10/9.,y/z=3/4 và x-y+z=78
tìm z,y,z biết x/y=10/9; y/z=3/4 và x-y+z=78
Ta có:\(\frac{x}{y}=\frac{10}{9}\Rightarrow\frac{x}{y}=\frac{30}{27}\Rightarrow\frac{x}{30}=\frac{y}{27}\left(1\right)\)
\(\frac{y}{z}=\frac{3}{4}\Rightarrow\frac{y}{z}=\frac{27}{36}\Rightarrow\frac{y}{27}=\frac{z}{36}\left(2\right)\)
Từ (1) và (2) suy ra:\(\frac{x}{30}=\frac{y}{27}=\frac{z}{36}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{x}{30}=\frac{y}{27}=\frac{z}{36}=\frac{x-y+z}{30-27+36}=\frac{78}{39}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{30}=2\\\frac{y}{27}=2\\\frac{z}{36}=2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=60\\y=54\\z=72\end{cases}}\)
Tìm x,y,z biết : :x/y = 10/9 ; y/z = 3/4 và x - y + z = 78
Ta có : \(\frac{x}{y}=\frac{10}{9}\Rightarrow\frac{x}{10}=\frac{y}{9}\)(1)
\(\frac{y}{z}=\frac{3}{4}\Rightarrow\frac{y}{3}=\frac{z}{4}\Leftrightarrow\frac{y}{9}=\frac{z}{12}\) (2)
Từ (1) và (2) => \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\)
Ta có : \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)
Nên : \(\frac{x}{10}=6\Rightarrow x=60\)
\(\frac{y}{9}=6\Rightarrow y=54\)
\(\frac{z}{12}=6\Rightarrow z=72\)
Vậy x = 60 ; y = 54 ; z = 72
Tim x;y;z biết x/y = 10/9 ; y/z = 3/4 và x - y +z =78
\(\frac{x}{y}=\frac{10}{9}\Rightarrow\frac{x}{10}=\frac{y}{9}\) (1)
\(\frac{y}{z}=\frac{3}{4}\Rightarrow\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{y}{3}.\frac{1}{3}=\frac{z}{4}.\frac{1}{3}\Rightarrow\frac{y}{9}=\frac{z}{12}\) (2)
Từ (1) ; (2) \(\Rightarrow\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\)và \(x-y+z=78\)Áp dụng TC DTSBN ta có :
\(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)
\(\Rightarrow x=60;y=54;z=72\)
tìm x,y,zbiết:x/y=10/9;y/z=3/4 và x-y+z=78
\(=>\dfrac{x}{10}=\dfrac{y}{9};\dfrac{y}{3}=\dfrac{z}{4}=>\dfrac{x}{10}=\dfrac{y}{9}=\dfrac{z}{12}\)
AD t/c của dãy tỉ số bằng nhau ta có
\(\dfrac{x}{10}=\dfrac{y}{9}=\dfrac{z}{12}=\dfrac{x-y+z}{10-9+12}=\dfrac{78}{13}=6\)
\(=>\left[{}\begin{matrix}x=10.6=60\\y=9.6=36\\z=12.6=72\end{matrix}\right.\)
1. Tìm x,y,z biết:
x/y = 10/9 ; y/z = 3/4 và x-y+z = 78
Ta có :\(\frac{x}{y}=\frac{10}{9};\frac{y}{z}=\frac{3}{4}\Rightarrow\frac{x}{10}=\frac{y}{9};\frac{y}{3}=\frac{z}{4}\)
\(\Rightarrow\frac{x}{10}=\frac{3y}{27};\frac{9y}{27}=\frac{z}{4}\Rightarrow\frac{x}{30}=\frac{y}{27}=\frac{z}{36}\)và x-y+z=78
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{30}=\frac{y}{27}=\frac{z}{36}=\frac{x-y+z}{30-27+36}=\frac{78}{39}=2\)
Suy ra : \(\frac{x}{30}=2\Rightarrow x=60\)
\(\frac{y}{27}=2\Rightarrow y=54\)
\(\frac{z}{36}=2\Rightarrow z=72\)
Tìm x, y, z biết
x/y = 10/9 ; y/z = 3/4 và x - y + z = 78
Ta có : \(\frac{x}{y}=\frac{10}{9}\Rightarrow\frac{x}{10}=\frac{y}{9}\)
\(\frac{y}{z}=\frac{3}{4}\Rightarrow\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{y}{9}=\frac{z}{12}\)
Nên : \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)
Do đó : \(\frac{x}{10}=6\Rightarrow x=60\)
\(\frac{y}{9}=6\Rightarrow y=54\)
\(\frac{z}{12}=6\Rightarrow z=72\)
Vậy x = 60 ; y = 54 ; z = 72
Tìm x ,y,z biết :
x/y = 10/9 ; y/z = 3/4 và x - y - z = 78
tìm x,y biết
a/ x/y = 10/9 ; y/z = 3/4 và x - y + z =78
b/ (6/11).x = (9/2).y = (18/5).z và (- x) + y+ z = -120
Tìm x;y;z biết x/y=10/9;y/z=3/4 với x-y+z = 78