tìm tất cả 3 số nguyên tố (q;p;r) sao cho pqr= p+q+r+160
Tìm tất cả các số nguyên tố p , q sao cho : p+q=(p-q)^3
p−q+2q=(p−q)3→2q=(p−q)((p−q)2−1)=(p−q)(p−q−1)(p−q+1)
Th1: p−qchia hết cho 2 suy ra p−q=2k
Suy ra q=k.(2k−1)(2k+1)
Do vậy k=1 vì nếu không thì qq thành tích 3 số nguyên lớn hơn 1 suy ra vô lý vì nó là nguyên tố.
Suy ra p−q=2Như vậy q=3,p=5Thỏa mãn
TH2: p−q−1 chia hết cho 2 suy ra p−q−1=2tnên q=(2t+1)t(2t+2)
Do vậy t=0 vì nếu không thì qq thành tích 2 số nguyên lớn hơn 1.
Suy ra p−q−1=0↔p−q=1↔p=3,q=2p−q−1=0↔p−q=1↔p=3,q=2 thay vào đề loại.
TH3: p−q+1=2m suy ra q=(2m−1)(2m−2)m
Nếu m≥2 suy ra qq thành tích 3 số nguyên lớn hơn 1 loại
Suy ra m=0,1 thay vào đều loại.
Vậy p=5,q=3
Tìm tất cả các số nguyên tố p q ,và số nguyên dương n thỏa mãn:
\(p\left(p+3\right)+q\left(q+3\right)=n\left(n+3\right)\)
tìm tất cả các cặp số nguyên tố p,q thỏa mãn các số 5p + q và pq + 7 đều là số nguyên tố
Tìm tất cả các số nguyên tố p,q sao cho 2p+q và p.q+1 cũng là số nguyên tố
p.q + 1là số nguyên tố
Mà p.q + 1 > 3 => p .q + 1 lẻ => p.q chẵn
< = > p = 2 hoặc q = 2
Bạn liệt kê ra
Tìm tất cả các số nguyên tố p , q sao cho 7p+q và pq+11 đều là số nguyên tố
Tìm tất cả các số nguyên tố p;q sao cho 2p+q và pq+1 đều là số nguyên tố
Tìm tất cả các số nguyên tố p,q sao cho 7p+q và pq+11 đều là số nguyên tố.
7p + q và pq + 11 đều là số nguyên tố
pq + 11 là số nguyên tố --> pq phải là số chẵn --> hoặc p = 2 hoặc q = 2
** Nếu p = 2 --> 7p + q = 14 + q
ta thấy 14 chia 3 dư 2 ;
+) nếu q chia hết cho 3,q là số nguyên tố --> q = 3
--> 7p + q = 17 --> là số nguyên tố
--> pq + 11 = 17 --> là số nguyên tố --> thỏa
+) nếu q chia 3 dư 1 --> 14 + q chia hết cho 3 --> là hợp số --> loại
+) nếu q chia 3 dư 2 --> 2q chia 3 dư 1 --> pq + 11 = 2q + 11 chia hết cho 3 --> là hợp số --> loại
** Nếu q = 2 --> 7p + q = 2 + 7p
2 chia 3 dư 2 ;
+) nếu 7p chia hết cho 3 --> p chia hết cho 3 --> p = 3
--> 7p + q = 23
--> pq + 11 = 17 --> đều là ố nguyên tố --> thỏa
+) nếu 7p chia 3 dư 1 --> 2 + 7p chia hết cho 3 --> là hợp số --> loại
+) nếu 7p chia 3 dư 2 --> p chia 3 dư 2 --> 2p chia 3 dư 1
--> pq + 11 = 2p + 11 chia hết cho 3 --> là hợp số --> loại
Tóm lại có 2 giá trị của p ; q thỏa mãn là : p = 2 ; q = 3 hoặc p = 3 ; q = 2
tìm tất cả các số nguyên tố p và q sao cho p+q và pq + 5 cũng là các số nguyên tố.
tìm tất cả các số nguyên tố p,q sao cho các số 7p + q,pq + 11 cũng là các số nguyên tố
Tìm tất cả các số nguyên tố p và q sao cho các số p+q và pq+5 cũng là các số nguyên tố