Cho x+y+z = 1. Tìm giá trị nhỏ nhất của:
P= \(\frac{3}{xy+yz+xz}+\frac{2}{x^2+y^2+z^2}\)
Cho x,y,z là các số dương thỏa mãn x2+y2+z2=1 .Tìm giá trị nhỏ nhất của \(C=\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\)
Ta có : \(\left(x^2+y^2+z^2\right)\left(1^2+1^2+1^2\right)\le\left(x.1+y.1+z.1\right)^2\) (bđt Bunhiacopxki)
\(\Leftrightarrow x^2+y^2+z^2\le\frac{\left(x+y+z\right)^2}{3}\) hay \(1\le\frac{\left(x+y+z\right)^2}{3}\)
\(\Rightarrow\left(x+y+z\right)^2\ge3\Rightarrow x+y+z\ge\sqrt{3}\) (do x;y;z dương)
Áp dụng bđt AM - GM ta có :
\(\frac{xy}{z}+\frac{yz}{x}\ge2\sqrt{\frac{xy}{z}.\frac{yz}{x}}=2y\)
\(\frac{xy}{z}+\frac{xz}{y}\ge2\sqrt{\frac{xy}{z}.\frac{xz}{y}}=2x\)
\(\frac{yz}{x}+\frac{xz}{y}\ge2\sqrt{\frac{yz}{x}.\frac{xz}{y}}=2z\)
Cộng vế với vế ta được :
\(2C\ge2\left(x+y+z\right)=2\sqrt{3}\Rightarrow C\ge\sqrt{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)
Đức Hùng hình như áp dụng sai ( ngược dấu ) BĐT Bunhiacopxki rồi
Cho x,y,z >0 . Tìm giá trị lớn nhất của \(A=\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{xz}}{y+2\sqrt{xz}}+\frac{\sqrt{xy}}{z+2\sqrt{xy}}\)
cho x,y,z>0 thỏa mãn \(x+y+z\ge2019\)tìm giá trị nhỏ nhất của \(T=\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\)
Áp dụng BĐT Cauchy-Schwarz Engel, ta được:
T\(\ge\)\(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\)+x+y+z+\(\sqrt{xy}\)+\(\sqrt{yz}\)+\(\sqrt{zx}\)-(x+y+z+\(\sqrt{xy}\)+\(\sqrt{yz}\)+\(\sqrt{zx}\))
Áp dụng BĐT AM-GM , ta được:
T\(\ge\)2(x+y+z)-x-y-z-\(\frac{x+y+z}{2}\)=\(\frac{x+y+z}{2}\)\(\ge\)\(\frac{2019}{2}\)
Vậy: GTNN của A=\(\frac{2019}{2}\)khi x=y=z=673
\(T>=\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}\)(bunhiacopxki dạng phân thức)
=>\(T>=\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}}\)
=>\(T>=\frac{2\left(x+y+z\right)^2}{4\left(x+yz\right)}=\frac{x+y+z}{2}=\frac{2019}{2}\)
xảy ra dấu= khi và chỉ khi \(x=y=z=\frac{2019}{3}\)
Cho x,y,z là 3 số dương thỏa mãn \(x^2+y^2+z^2\le6\) Tìm giá trị nhỏ nhất của biểu thức \(Q=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\)
\(Q=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=\frac{1^2}{xy}+\frac{1^2}{yz}+\frac{1^2}{xz}\ge\frac{\left(1+1+1\right)^2}{xy+yz+xz}\)
\(=\frac{9}{xy+yz+zx}\ge\frac{9}{x^2+y^2+z^2}\ge\frac{9}{6}=\frac{3}{2}\).
Dấu " = " xảy ra <=> x = y =z = \(\sqrt{2}\).
Bài 1:Cộng các phân thưc sau(rút gọn):
P=\(\frac{1}{\left(y-z\right)\left(x^2-xz-y^2-yz\right)}+\frac{1}{\left(z-x\right)\left(y^2+xy-z^2-xz\right)}+\frac{1}{\left(x-y\right)\left(z^2+yz-x^2-xy\right)}\)
Bài 2:
a) Tìm giá trị nhỏ nhất của P=\(\frac{2\left(2x+1\right)}{x^2+2}\)
b) Tìm giá trị lớn nhất của Q=\(\frac{2x^2-4x+17}{x^2-2x+4}\)
các bạn giải nhanh cho mình nhé vì mình đang cần gấp
Mình nghĩ bạn viết hơi sai đề bài.
\(x^2+xz-y^2-yz=\left(x^2-y^2\right)+xz-yz=\left(x-y\right)\left(x+y\right)+z\left(x-y\right)=\left(x-y\right)\left(x+y+z\right)\)
Tương tự: \(y^2+xy-z^2-xz=\left(y-z\right)\left(x+y+z\right)\)
\(z^2+yz-x^2-xy=\left(x+y+z\right)\left(z-x\right)\)
Khi đó:
\(P=\frac{1}{\left(y-z\right)\left(x-y\right)\left(x+y+z\right)}+\frac{1}{\left(z-x\right)\left(y-z\right)\left(x+y+z\right)}+\frac{1}{\left(x-y\right)\left(x+y+z\right)\left(z-x\right)}\)
\(=\frac{z-x+x-y+y-z}{\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(x+y+z\right)}=0\)
um, cảm ơn bạn Pham Van Hung, có lẽ là mình chép sai đầu bài
1)cho a,b,c dương thỏa mãn abc=1
tìm giá trị nhỏ nhất của B=\(\frac{\sqrt{a^3+b^3+1}}{ab}+\frac{\sqrt{b^3+a^3+1}}{bc}+\frac{\sqrt{c^3+a^3+1}}{ca}\)
2) cho x,y,z dương
tìm giá trị nhỏ nhất của P=\(x\left(\frac{x}{2}+\frac{1}{yz}\right)+y\left(\frac{y}{2}+\frac{1}{xz}\right)+z\left(\frac{z}{2}+\frac{1}{xy}\right)\)
Cho các số dương x, y, z thỏa mãn:\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
Tìm giá trị lớn nhất của
\(Q=\frac{x}{\sqrt{yz\left(1+x^2\right)}}+\frac{y}{\sqrt{xz\left(1+y^2\right)}}+\frac{z}{\sqrt{xy\left(1+z^2\right)}}\)
Từ dữ kiện đề bài => x + y + z = xyz
Ta có :
\(\frac{x}{\sqrt{yz\left(1+x^2\right)}}=\frac{x}{\sqrt{yz+xyz.x}}=\frac{x}{\sqrt{yz+x\left(x+y+z\right)}}=\frac{x}{\sqrt{\left(x+z\right)\left(x+y\right)}}\)
\(=\frac{\sqrt{x}}{\sqrt{x+z}}.\frac{\sqrt{x}}{\sqrt{x+y}}\le\frac{1}{2}.\left(\frac{x}{x+z}+\frac{x}{x+y}\right)\)
Tương tự với hai hạng tử còn lại , suy ra
\(Q\le\frac{1}{2}\left(\frac{x}{x+z}+\frac{x}{x+y}\right)+\frac{1}{2}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)+\frac{1}{2}\left(\frac{z}{z+x}+\frac{z}{z+y}\right)=\frac{3}{2}\)
Vậy Max = 3/2 <=> x = y = z
Nguồn : Đinh Đức Hùng
cho các số thực dương x,y,z thỏa mãn xy=xz+yz. tìm giá trị nhỏ nhất
\(P=\frac{\text{4z(z^2-xy)-(x^2+y^2)(2z-x-y)}}{\left(x+y\right)z^2}\)
cho x,y,z >0 thỏa mãn \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=1\) Tìm giá trị nhỏ nhất của \(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)
theo sách nâng cao và phát triển toàn 9 ta có \(A\ge\frac{x+y+z}{2}\ge\frac{\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}{2}\)
Tìm giá trị nhỏ nhất của biểu thức :
\(P=x\left(\frac{x}{2}+\frac{1}{yz}\right)+y\left(\frac{y}{2}+\frac{1}{xz}\right)+z\left(\frac{z}{2}+\frac{1}{xy}\right)\)
Với x, y, x là các số dương
Ta có :
\(P=\frac{x^2}{2}+\frac{y^2}{2}+\frac{z^2}{2}+\frac{x^2+y^2+z^2}{xyz}\) (1)
Do : \(x^2+y^2+z^2\ge xy+yz+zx\), nên từ (1) ta có :
\(P\ge\frac{x^2}{2}+\frac{y^2}{2}+\frac{z^2}{2}+\frac{x^2+y^2+z^2}{xyz}\)
\(P\ge\left(\frac{x^2}{2}+\frac{1}{x}\right)+\left(\frac{y^2}{2}+\frac{1}{y}\right)+\left(\frac{z^2}{2}+\frac{1}{z}\right)\) (2)
Xét hàm số \(f\left(t\right)=\frac{t^2}{2}+\frac{1}{t};t>0\)
Ta có : \(f'\left(t\right)=t-\frac{1}{t^2}=\frac{t^3-1}{t^2}\)
Lập bảng biến thiên sau :
Từ đó suy ra :
\(f\left(t\right)\ge\frac{3}{2}\) với mọi \(t>0\)
Vì lẽ đó từ (2) ta có : \(P\ge3.\frac{3}{2}\) với mọi \(x,y,z>0\)
Mặt khác khi \(x=y=z\) thì \(P=\frac{9}{2}\) vậy Min \(P=\frac{9}{2}\)