Chứng minh với mọi số nguyên dương n và số tự nhiên lẻ k ta luôn có (k^2^n-1) chia hết cho 2^n+2
1 Cho số tự nhiên n với n > 2. Biết 2n - 1 là 1 số nguyên tố. Chứng tỏ rằng số 2n + 1 là hợp số
2 Cho 3 số: p, p+2014.k, p+2014.k là các số nguyên tố lớn hơn 3 vá p chia cho 3 dư 1. Chứng minh rằng k chia hết cho 6
3 Cho 2 số tự nhiên a và b, trong đó a là số lẻ. Chứng minh rằng 2 số a và a.b+22013là 2 số nguyên tố cùng nhau
4 Cho m và n là các số tự nhiên, m là số lẻ. Chứng tỏ rằng m và mn+8 là 2 số nguyên tố cùng nhau
5 Cho A=32011-32010+...+33-32+3-1. Chứng minh rằng a=(32012-1) : 4
6 Cho số abc chia hết cho 37. Chứng minh rằng số bca chia hết cho 37
Cho n là số nguyên dương, k là số tự nhiên lẻ. Chứng Minh Rằng:
\(1^k+2^k+3^k+...+n^k\)chia hết cho\(\left(1+2+3+...+n\right)\)
Ta có (ak+bk)\(⋮\)(a+b) với k = 2t+1, t\(\in\)N, a2+b2\(\ne\)0
A=1k+2k+...+(n-1)k+nk ; 2B=2(1+2+...+n)=n(n+1)
2A=[(1k+nk)+(2k+(n-1)k+... ]\(⋮\)(n+1)
2A=2[(1k+(n-1)k)+(2k+(n-2)k)+...+nk ] \(⋮\)n
Vậy A \(⋮\)B
Chứng minh với mọi số tự nhiên n ta có n(n+1) luôn chia hết cho 2
Chắc chắn sai đề vì n(n+1) luôn là số lẻ làm sao mà chia hết cho 2 được
Chứng minh rằng với mọi số nguyên dương n ta luôn có\(5^{n+2}+3^{n+2}-3^n-5^n\)chia hết cho 24
\(5^{n+2}+3^{n+2}-3^n-5^n=5^n\left(5^2-1\right)+3^n\left(3^2-1\right)=5^n.24+3^n.8\)
Ta có \(5^n.24⋮24\) và \(3^n.8⋮3.8=24\)
Vậy ta đc đpcm
5n+2+3n+2−3n−5n=5n(52−1)+3n(32−1)=5n.24+3n.85n+2+3n+2−3n−5n=5n(52−1)+3n(32−1)=5n.24+3n.8
Ta có 5n.24⋮245n.24⋮24 và 3n.8⋮3.8=24 vây ta CM đc cái trên
1) Cho 2 số tự nhiên a và b, biết 2 chia cho 6 dư 2 và b chia cho 6 dư 3. . Chứng minh rằng ab chia hết cho 6.
2) Cho a và b là 2 sớ tự nhiên, biết a chia cho 5 dư 2 và b chia cho 5 dư 3 . Chứng minh rằng ab chia cho 5 dư 1.
3) Cho 2 số tự nhiên a và b, biết a chia cho 6 dư 3 và ab chia hết cho 6. . Hỏi b chia cho 6 có số dư là bao nhiêu? Chứng minh.
4) Chứng minh rằng: n (2n - 3) - 2n (n + 1) luôn chia hết cho 5 với n là số tự nhiên.
5) Chứng minh rằng với mọi số nguyên n biểu thức (n - 1) (n + 4) - (n - 4) (n + 1) luôn chia hết cho 6.
Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6
Bài toán 1 : Chứng minh rằng mọi số nguyên tố p ta có thể tìm được một số được viết bởi hai chữ số chia hết cho p.
Bài toán 2 : Chứng minh rằng nếu một số tự nhiên không chia hết cho 2 và 5 thì tồn tại bội của nó có dạng : 111...1.
Bài toán 3 : Chứng minh rằng tồn tại số có dạng 1997k (k thuộc N) có tận cùng là 0001.
Bài toán 4 : Chứng minh rằng nếu các số nguyên m và n nguyên tố cùng nhau thì tìm được số tự nhiên k sao cho mk - 1 chia hết cho n
cmr với n >=1 và k là một số tự nhiên lẻ ta có:
1k+2k+....+nk chia hết cho 1+2+....+n
đặc biệt 1k+2k+...+(2n)k chia hết cho n(2n+1)
Chứng tỏ rằng trong hai số tự nhiên chẵn liên tiếp thì luôn có một và chỉ một số chia hết cho 4(xét hai số tự nhiên chẵn liên tiếp a=2k và a+2=2k+2 ( với k thuộc n) rồi xét trường hợp k là số chẵn k là số lẻ)
1, cho a và b là 2 số tự nhiên. Biết a chia cho 3 dư 1 , b chia cho 3 dư 2. Chứng minh rằng ab chia cho 3 dư 2
2, chứng minh rằng biểu thức n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
3, chứng minh rằng biểu thức (n-1)(3-2n)-n(n+5) chia hết cho 3 với mọi giá trị của n
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!