Tìm cặp số nguyên x, y biết :
a) (x + 4).( y – 8) = 6
b) 2x + xy + 3y + 6 = 10
Tìm cặp số nguyên x, y biết :
a) (x + 4).( y – 8) = 6
b) 2x + xy + 3y + 6 = 10
tim cặp (x;y)nguyên:
a)xy+3y-2x-6=7
b)xy+3y+x=-5
TÌM CÁC CẶP SỐ NGUYÊN x;y BIẾT :
a)xy-y=15
b)xy+3y-17=0
c)xy-3y+2x=0
Tìm số nguyên x biết
a,3x+3y-2xy=7
b,xy+2x+y+11=0
c,xy+x-y=4
d,2x.(3y-2)+(3y-2)=12
e,3x+4y-xy=15
f,xy+3x-2y=11
g,xy+12=x+y
h,xy-2x-y=-6
i,xy+4x=25+5y
ii,2xy-6y+x=9
iii,xy-x+2y=3
k,2.x^2.y-x^2-2y-2=0
l,x^2.y-x+xy=6
tìm các số nguyên x,y bt
a, /2x+8/ + /3y-9x/= 0
b, xy - 7x + 3y = 16
c, (x-7).(xy+1) =9
d, | /y/+ /2x+6/|+(x) =0
giúp mk nha
a, Vì |2x+8| và |3y-9x| đều >= 0
=> |2x+8| + |3y-9x| >= 0
Dấu "=" xảy ra <=> 2x+8=0 và 3y-9x=0 <=> x=-4 và y=-12
Vậy x=-4 và y=-12
Tk mk nha
Bài 3: Cho Q=4xy²+|5x-15|-(9-2x+4xy²)
a)Thu gọn Q
b)Tính Q khi x=3,y=20152016
c)Tìm x để Q=0
Bài 4: Tính giá trị tổng của đa thức M+N biết x-y=0
M=9x-9y+5ax+4bx-5ay-4by+36
N=10x(2x²+3y³)-10y(2x²+3y³)+64
Bài 5: Tính giá trị biểu thức
a) P=5x4-8x²y²+3y4-20y² với x²-y²=10
b) Q=x³+x²y-5x²-x²y-xy²+5xy+3(x+y)+2000
Bài 6: Tìm các cặp số nguyên dương (x;y) để biểu thức P nhận giá trị là số nguyên
\(P=\frac{3x+3y+5}{x+y}\)
Tìm các cặp số nguyên (x,y) biết:
a) xy - 2x - 3y= 9
b) xy - 3x = 7
a)Ta có :\(xy-2x-3y=9\)
\(x.\left(y-2\right)\)-\(3.\left(y-2\right)\)\(-6=9\)
\(\left(x-3\right)\)\(.\left(y-2\right)\)\(=15\)
đến đây cậu tự làm tiếp nhé
x-3 ,y-2 Ư(15)=1;3;5;15
x-3 | 1 | 15 | -1 | -15 | 3 | 5 | -3 | -5 |
y-2 | 15 | 1 | -15 | -1 | 5 | 3 | -5 | -3 |
x | 4 | 18 | 2 | -12 | 6 | 8 | 0 | -2 |
y | 17 | 3 | -13 | 1 | 7 | 5 | -3 | -1 |
\(\left(x;y\right)\) \(\left(4;17\right),\left(18;3\right),\left(2;-13\right),\left(-12;1\right),\left(6;7\right),\left(8;5\right),\)\(\left(0;-3\right),\left(-2;-1\right)\)
Tìm x,y nguyên biết
a, xy+3x-y=6
b, 2x+3y=2
Bài 4 : Tìm cặp ( x ; y ) nguyên thỏa mãn :
a) xy + 4x + y = 6
b) xy - 2x = y - 3
c) 2xy + x + y = 4
d) xy - 2x - y = -4
a, \(xy\) + 4\(x\) + \(y\) = 6
\(xy\) + y + 4\(x\) + 4 = 10
(\(xy\)+y) + (4\(x\) + 4) = 10
y(\(x\) + 1) + 44(\(x\) + 1) =10
(\(x\) + 1)(y + 4) = 10
Ư(10) = { -10; -5; -2; -1; 1; 2; 5; 10}
Lập bảng ta có:
\(x+1\) | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
\(x\) | -11 | -6 | -3 | -2 | 0 | 1 | 4 | 9 |
y + 4 | -1 | -2 | -5 | -10 | 10 | 5 | 2 | 1 |
y | -5 | -6 | -9 | -14 | 6 | 1 | -2 | -3 |
Từ bảng trên ta có các cặp \(x\) , y nguyên thỏa mãn đề bài là:
(\(x\); y) =(-11; -5); ( -6; -6); (-3; -9); (-2; -14); (0; 6); (1; 1); (4; -2); (9; - 3)
b, \(xy\) - 2\(x\) = y - 3
\(x\)y - y - 2\(x\) + 2 = -1
(\(x\)y - y) - (2\(x\) - 2) = -1
y(\(x\) - 1) - 2(\(x\) -1) = -1
(\(x\) - 1)(y -2) = -1
⇔ (1-\(x\))(y-2) =1
Ư(1) = {-1; 1}
Lập bảng ta có:
\(1-x\) | -1 | 1 |
\(x\) | 2 | 0 |
y- 2 | -1 | 1 |
y | 1 | 3 |
Theo bảng trên ta có các cặp \(x\), y nguyên thỏa mãn đề bài là:
(\(x\); y) = (2; 1); (0; 3)
c, 2\(xy\) + \(x\) + y = 4
(2\(xy\) + y) + \(x\) = 4
y(2\(x\) +1) = 4 - \(x\)
y = (4-\(x\)) : (2\(x\) +1); y \(\in\) Z ⇔ 4 - \(x\) ⋮ 2\(x\) + 1 ⇔ 2 \(\times\)( 4 - \(x\))⋮ 2\(x\)+1
⇔ 8 - 2\(x\) ⋮ 2\(x\) + 1 ⇔ -2\(x\) - 1 + 9 ⋮ 2\(x\) + 1 ⇔ -(2\(x\)+1) +9⋮ 2\(x\) +1
⇔ 9 ⋮ 2\(x\) + 1 ⇔ ( 2\(x\) + 1) \(\in\) { -9; -3; -1; 1; 3; 9}
⇒ \(x\) \(\in\) { -5; -2; -1; 0; 1; 4}
y \(\in\) { -1; -2; -5; 4; 1; 0}
Vậy các cặp \(x\); y nguyên thỏa mãn đề bài là:
(\(x\); y) = (-5; -1); (-2; -2); ( -1; -5); (0; 4); (1;1); (4; 0)