A=1/2! +2/3! +3/4!+...+9/10!
Chứng minh A<1.
mik cần gấp mấy bạn giúp mình nha.
1) Tính: A= 2/4.7-3/5.9+2/7.10-3/9.13+..+2/301.304-3/401.405
2) Chứng minh rằng với mọi n thuộc số tự nhiên, n lớn hơn hoặc bằng 2: 3/9.14+3/14.19+...+3/(5n-1).(5n+4)<1/15
3) a) Cho A=9/5^2+9/11^2+9/17^2+...+9/305^2. Chứng minh A<3/4
b) Cho C=4/3+7/3^2+10/3^3+...+3n+1/3^n với số tự nhiên khác 0. Chứng minh rằng C<11/4
4) Tính: a) =1/2+1/2^2+1/2^3+...+1/2^100
b) B=1/3-1/3^2+1/3^3-1/3^4+...+1/3^99-1/3^100
5) So sánh: (1-1/2).(1-1/3).(1-1/4). ... .(1-1/20) với 1/21
A=1/2+1/2^2+1/2^3+...+1/2^20
Chứng minh A<1
Chứng minh 3/1^2 x 2^2 + 5/2^3 x 3^2 + 7/3^2 x 4^2 + ... + 19/9^2 x 10^2 < 1
Tính
A=1/2+1/2^2+1/2^3+...+1/2^100
Tính
B=1/2+1/2^2+1/2^3+1/2^4+...+1/2^99 - 1/2^100
Tính
C=1/2+1/2^3+1/2^5+...+1/2^99
Tính
D=2/3+8/9+26/27+...+3^n-1/3^n.Chứng minh A>n-1/2
Tính: E=4/3+10/9+28/27+...+3^39+1/3^92.Chứng minh B<100
Tính
F=5/4+5/4^2+5/4^3+...+5/4^99.Chứng minh C<5/3
Tính
G=3/1^2*2^2+5/2^2*3^2+7/3^2*4^2+...+19/9^2*10^2.Chứng Minh D<1
a) Ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Leftrightarrow2\cdot A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(\Leftrightarrow2\cdot A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(\Leftrightarrow A=1-\frac{1}{2^{100}}\)
Cho A = 1/1 - 1/2 + 1/3 - 1/4 + ... + 1/9 - 1/10
B = ( 1/1 + 1/2 + 1/3 + ... + 1/10 ) - 2 ( 1/2 + 1/4 + ... + 1/10 )
1/ So sánh A và B
2/ Chứng minh: A = 1/6 + 1/7 + 1/8 +1/9 + 1/10
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(A=\left(1+\frac{1}{3}+...+\frac{1}{9}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{9}+\frac{1}{10}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{9}+\frac{1}{10}\right)-\left(1+\frac{1}{2}+...+\frac{1}{5}\right)\)
\(A=\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+...+\frac{1}{10}\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{5}\right)\)
Vậy A = B và A = 1/6 + 1/7 + 1/8 + 1/9 + 1/10
1/ A= \(\left(\frac{1}{1.2}\right)+\left(\frac{1}{3.4}\right)+...+\left(\frac{1}{9.10}\right)\)
B=(1/1+1/2+1/3+...+1/10)- (1/1+1/2+...+1/5)
<=> B=1/6+1/7+1/8+1/9+1/10.
A=2/3+8/9+26/27+...+3n+1/3n , chứng minh A>n-1/2
F=4/3+7/32+10/33+...+3n+1/3n,chứng minh E<3/4
so sánh L=(1-1/4).(1-1/9).(1-1/16)....(1-1/20) với 1/21
A=3+3^2+3^3+.....+3^9+3^10 chứng minh A : 4
A = 3 + 32 + 33 + ........... + 39 + 310
A = (3 + 32) + (33 + 34) + ................ + (39 + 310)
A = 3.(1 + 3) + 33.(1 + 3) + .................. + 39.(1 + 3)
A = 3.4 + 33.4 + ..................... + 39 . 4
A = 4.(3 + 33 + ................... + 39)
3A = 3^2+3^3+3^4+...+3^10+3^11
3A-A= [3^2-3^2]+[3^3-3^3]+...+[3^10-3^10]+3^11-3
2A=3^11-3
2A=177144
A=177144:2=88572
Vì dấu hiệu chia hết cho 4 là 2 chữ số tận cùng chia hết cho 4 thì số đó chia hết cho 4.
Ma : 72 chia het cho 4
Vay 88572 chia hết cho 4 hay A chia hết cho 4
Mai tớ phải nộp bài rồi! Các bạn giúp tớ nhé
a) 2^x+1. 3^y= 12^x
b) Chứng minh: 3/ 1^2. 2^2 + 5/2^2. 3^2 + 7/4^2. 5^2+.....+ 19/ 9^2. 10^2 < 1
c) Rút gọn: A= 1/3 + 2/3^2 + 3/3^3 + 4/3^4 +....+ 100/ 3^100. Chứng minh A < 3/4
cho A=1/1-1/2+1/2_1/4+...+1/9-1/10
B=(1/1+1/2+1/3+...+1/10)-2.(1/2+1/4+...+1/10)a, so sánh Avaf B
b, chứng minh: A=1/6+1/7+1/8+1/9+1/10
Cho A =1/1-1/2+1/3-1/4+...+1/9-1/10
Chứng minh rằng A=1/6+1/7+1/8+1/9/+1/10
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{9}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{9}+\frac{1}{10}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}-1-\frac{1}{2}-...-\frac{1}{5}\)
\(=\frac{1}{6}+\frac{1}{7}+...+\frac{1}{10}\left(đpcm\right)\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\)\(\frac{1}{10}\)
\(A=\frac{1}{1}+\frac{1}{3}+...+\frac{1}{9}-\frac{1}{2}-\frac{1}{4}-...-\frac{1}{10}\)
\(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{9}+\frac{1}{10}-2.\frac{1}{2}-2.\frac{1}{4}-...-2.\frac{1}{10}\)
\(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{9}+\frac{1}{10}-1-\frac{1}{2}-...-\frac{1}{5}\)
\(A=\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\left(đpcm\right)\)
~~~Hok tốt~~~