Tìm giá trị lớn nhất và nhỏ nhất của biểu thức M =\(\frac{x^2+1}{x^2-x+1}\)
Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức: A=\(\frac{x^2+1}{x^2-x+1}\)
GTNN của A:
A=x2+1/x2-x+1=1+x/x2+1-x
=>A>1
suy ra:GTNN cùa A=2 với x=1
a) Rút gọn rồi tìm giá trị của x để biểu thức: \(\frac{x^2}{x-2}.\left(\frac{x^2+4}{x}-4\right)+3\) có giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
b) Rút gọn rồi tìm giá trị của x để biểu thức: \(\frac{^{x^2}}{x-2}.\left(1-\frac{^{x^2}}{x+2}\right)-\frac{x^2+6x+4}{x}\)có giá trị lớn nhất. Tìm giá trị lớn nhất đo.
tìm giá trị lớn nhất giá trị nhỏ nhất của biểu thức của biểu thức M= (x^2-y^2)(1-x^2.y^2)/(1+x^2)^2.(1+y^2)^2
Tìm giá trị nhỏ nhât và Lớn nhất của biểu thức \(M=\frac{x+1}{x^2+x+1}\)
Lời giải:
$M=\frac{x+1}{x^2+x+1}$
$\Leftrightarrow M(x^2+x+1)=x+1$
$\Leftrightarrow Mx^2+x(M-1)+(M-1)=0(*)$
Vì $M$ tồn tại PT $(*)$ luôn có nghiệm.
$\Leftrightarrow \Delta=(M-1)^2-4M(M-1)\geq 0$
$\Leftrightarrow (M-1)(M-1-4M)\geq 0$
$\Leftrightarrow (M-1)(-1-3M)\geq 0$
$\Leftrightarrow (M-1)(3M+1)\leq 0$
$\Leftrightarrow \frac{-1}{3}\leq M\leq 1$
Vậy $M_{\min}=\frac{-1}{3}; M_{\max}=1$
Tìm giá trị nhỏ nhất của biểu thức: (x+2)^2 + (y-3)^2 + 1
tìm giá trị lớn nhất của biểu thức: \(\frac{1}{\left(x-2\right)^2+2}\)
1 )Vì \(\left(x+2\right)^2\ge0;\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2+1\ge1\)
Dấu "=: xảy ra <=> \(\orbr{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}}\)
Vậy ........
2 ) \(\frac{1}{\left(x-2\right)^2+2}\ge\frac{1}{2}\)
Dấu "=" xảy ra <=> x = 2
Vậy ..........
Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức \(\frac{x^2}{x^4+x^2+1}\)
+) Min: \(A=\frac{x^2}{x^4+x^2+1}\ge0\forall x\)
Dấu "=" <=> x=0
+) Max: \(1-3A=\frac{x^4-2x^2+1}{x^4+x^2+1}=\frac{\left(x^2-1\right)^2}{x^4+x^2+1}\ge0\)
\(\Rightarrow A\le\frac{1}{3}\)Dấu "=" <=> x= 1,-1
tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức \(\frac{x^4+x^2+5}{\left(x^2+1\right)^2}\)
GTNN
Xét tử : x^4+x^2+5= x^4+2x^2+1 -x^2+4 =(x^2+1)^2 -(x-2)(x+2)
=> GTNN của Biểu thức là 1 <=> x=2 hoặc x= -2
GTLN: Ko có
1) Tìm giá trị lớn nhất của biểu thức
M = \(\frac{x}{\left(x+2017\right)^2}\)với x > 0
2) Tìm giá trị nhỏ nhất của biểu thức
M = \(5x^2+y^2\)biết x + y = 1
tìm giá trị lớn nhất và nhỏ nhất của biểu thức A= (x^2-x+1)/(x^2+x+1)
\(A=\dfrac{3\left(x^2+x+1\right)-2x^2-4x-2}{x^2+x+1}=3-\dfrac{2\left(x+1\right)^2}{x^2+x+1}\le3\)
\(A_{max}=3\) khi \(x=-1\)
\(A=\dfrac{3x^2-3x+3}{3\left(x^2+x+1\right)}=\dfrac{x^2+x+1+2x^2-4x+2}{3\left(x^2+x+1\right)}=\dfrac{1}{3}+\dfrac{2\left(x-1\right)^2}{3\left(x^2+x+1\right)}\ge\dfrac{1}{3}\)
\(A_{min}=\dfrac{1}{3}\) khi \(x=-1\)