Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Kim Phụng
Xem chi tiết
Ngô Chi Lan
24 tháng 8 2020 lúc 17:10

Bài làm:

Ta có: \(A^2=b\left(a-c\right)-c\left(a-b\right)\)

\(A^2=ab-bc-ac+bc\)

\(A^2=ab-ac=a\left(b-c\right)\)

\(A^2=\left(-5\right).\left(-20\right)=100\)

\(\Rightarrow\orbr{\begin{cases}A=10\\A=-10\end{cases}}\)

Khách vãng lai đã xóa
Xyz OLM
24 tháng 8 2020 lúc 17:12

A2 = b(a - c) - c(a - b) 

   = ab - bc - ac + bc

   = ab - ac

   = a(b - c)

Thay a = -5 ; b - c = -20 vào A2 ta có

 A2 = (-5).(-20)

=> A2 = 100

=> A = \(\pm\)10

Vậy khi a = - 5 ; b - c = -20 thì A có 2 giá trị là A = -10 ; A = 10

Khách vãng lai đã xóa
Trà My
Xem chi tiết
bỏ mặc tất cả
9 tháng 4 2016 lúc 22:34

Chiều rộng là : 15 : ( 5 - 3 ) x 3 = 22,5 m

Chiều dài là : 15 + 22,5 = 37,5 m

Chu vi là : ( 37,5 + 22,5 ) x 2 = 120 m

Diện tích là : 37,5 x 22,5 = 843,75 m2

bỏ mặc tất cả
9 tháng 4 2016 lúc 22:53

Ta có: (a+b-c)/c=(b+c-a)/a=(c+a-b)/b=(a+b-c+b+c... (a+b+c)=(a+b+c)/(a+b+c)=1 
=>(a+b-c)/c=1 => a+b-c=c =>a+b=2c (1) 
Tương tự: (b+c-a)/a=1 =>b+c=2a (2) 
(c+a-b)/b=1 =>c+a=2b (3) 
Thay (1), (2), (3) vào P, ta có: 
P=(a+b)/a . (b+c)/b .(a+c)/c=2c/a.2a/b.2b/c=2.2.2=8. Hết nhưng sách thì chia ra hai trường hợp như sau: 
Từ giả thiết, suy ra: 
(a+b-c)/c+2=(b+c-a)/a+2=(c+a-b)/b+2 
<=> (a+b+c)/c=(b+c+a)/a=(c+a+b)/b 
Xét 2 trường hợp: 
Nếu a+b+c=0 => (a+b)/a.(b+c)/b.(c+a)/c=((-c)(-a)(-b))/a... 
Nếu a+b+c khác 0 =>a=b=c =>P=2.2.2=8

Nguyễn Văn Toàn
Xem chi tiết
Đại tỉ tỉ
Xem chi tiết
pham ngoc lan
Xem chi tiết
Cố Tử Thần
2 tháng 2 2019 lúc 14:22

a,A= -a-b+c+a+b+c=2c

b, khi a=1,b=-1,c=-2 thì 

A=2(-2)=-4

Nguyễn Quỳnh Trang
2 tháng 2 2019 lúc 15:04

a)

\(A=\left(-a-b+c\right)-\left(-a-b-c\right)\)

\(A=-a-b+c-\left(-a\right)+b+c\)

\(A=-a+\left(-b\right)+c+a+b+c\)

\(A=\left[\left(-a\right)+a\right]+\left[\left(-b\right)+b\right]+\left(c+c\right)\)

\(A=0+0+2c\)

\(A=2c\)

____________________________________________________________________________

b)

Cách 1 :  \(A=\left(-1-\left(-1\right)+\left(-2\right)\right)-\left(1-\left(-1\right)-\left(-2\right)\right)\)

\(A=-1-\left(-1\right)+\left(-2\right)-\left(-1\right)+\left(-1\right)+\left(-2\right)\)

\(A=-1+1+\left(-2\right)+1+\left(-1\right)+\left(-2\right)\)

\(A=\left[\left(-1\right)+1+1+\left(-1\right)\right]+\left[\left(-2\right)+\left(-2\right)\right]\)

\(A=0+\left(-4\right)=\left(-4\right)\)

Cách 2 : Từ ý   a   suy ra :

\(A=\left(-2\right)\cdot2=\left(-4\right)\)

Nguyen Thi Ngoc Bich
Xem chi tiết
Emma
7 tháng 3 2020 lúc 21:38

a(b-c)+a(d+c)=a(b+d)

Ta có :a(b-c)+a(d+c)

= ab - ac + ad + ac 

= ab + ad

= a( b + d ) \(\rightarrow\)ĐPCM

# HOK TỐT #

Khách vãng lai đã xóa
•๖ۣۜƓiȵ༄²ᵏ⁶
7 tháng 3 2020 lúc 21:39

Biến đổi vế trái ta được:

a(b-c)+a(d+c)

=a(b-c+d+c)

=a(b+d)

=Vế phải (đpcm)

Khách vãng lai đã xóa
Hoàng hôn  ( Cool Team )
7 tháng 3 2020 lúc 21:42

a(b-c)+a(d+c)=a(b+d)

Ta có : a(b-c)-a(d+c)

= ab - ac - ad - ac  

= ab - ad

= a( b - d ) →ĐPCM

Khách vãng lai đã xóa
w1daniel
Xem chi tiết
Nguyễn Công Tỉnh
6 tháng 5 2020 lúc 15:48

\(A=\left[\frac{6x^2}{x^3-1}-\frac{2x-2}{x^2+x+1}-\frac{1}{x-1}\right]:\frac{x^2+9}{\left(x-1\right)\left(9-4x\right)}\)

\(=\left[\frac{6x^2}{x^3-1}-\frac{\left(2x-2\right)\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}-\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right]\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)

\(=\frac{6x^2-\left(2x^2-4x+2\right)-x^2-x-1}{\left(x^2+x+1\right)\left(x-1\right)}\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)

\(=\frac{5x^2-2x^2+4x-2-x-1}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)

\(=\frac{3x^2+3x-3}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)

Biểu thức A bạn viết đúng chưa?

Khách vãng lai đã xóa
Nguyễn Minh Tuấn
Xem chi tiết
Rarah Venislan
Xem chi tiết