Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trang
Xem chi tiết
Nguyễn Trang
Xem chi tiết
Nguyễn Thị Quỳnh Anh
Xem chi tiết
Ngọc Đỗ
Xem chi tiết
Lê Ngọc Hiền
Xem chi tiết
Steolla
31 tháng 8 2017 lúc 12:24

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

anh_tuấn_bùi
Xem chi tiết
Lê Anh Tú
31 tháng 8 2017 lúc 20:56

Giải

Ta thấy đường trung bình tam giác ABC nên BEDC là hình thang, lại có\(BM=MC\cdot DN=NC\Rightarrow MN\)   là đường trung bình hình thang BEDC hay MN ong song DE và BC. Lại dùng đường trung bình thì 

\(MI=KN=\frac{DE}{2}\left(1\right)\)

\(MN=\frac{DE^2+BC}{2}\Rightarrow IK=MN-2MI=\frac{DE+BC}{2}-DE\)

\(=\frac{BC-DE}{2}=\frac{DE^2}{2}\left(BC=2DE\right)\left(2\right)\)

\(\Leftrightarrow Q\cdot E\cdot D\Rightarrowđcpm\)

Ben 10
12 tháng 9 2017 lúc 21:48

[​IMG]
Mình sẽ làm câu b trước rồi từ đó suy ra a
b)Giả sử MP=PQ=QN đã có từ trước
Xét △△ ABC có E là trung điểm AB,D là trung điểm AC \Rightarrow ED là đường trung bình của △△ ABC\Rightarrow ED//BC và ED=BC/2(*)
Xét hình thang EDBC có M là trung điểm BE,N là trung điểm CE \Rightarrow MN//BC( (*) (*) )
Từ (*)( (*) (*) ) \Rightarrow ED//MN
Xét △△ BED có M là trung điểm BE,MP//ED \Rightarrow MP là đường trung bình của △△ BED \Rightarrow MP=ED/2
Tương tự cũng có NQ=ED/2
Ta có :MP=PQ
\Leftrightarrow ED2=BC−ED2ED2=BC−ED2
\Leftrightarrow ED=BC-ED
\Leftrightarrow 2ED=BC
Tương tự với NQ và PQ cũng rứa
Vậy muốn NQ=PQ=MP thì 2ED=BC Điều này là hiển nhiên ở (*)
từ đó phát triển lên câu a)NQ=PQ=MP=1/2ED
\Rightarrow MN=3/2ED \RightarrowMN=3/4BC
Đúng thì thanks giùm nha

Đức Hiếu Nguyễn
Xem chi tiết
Thư Anh Nguyễn
Xem chi tiết

Bạn tham kháo nha:

https://olm.vn/hoi-dap/detail/8338961574.html

Nguyễn Phương Thúy
Xem chi tiết
tth_new
1 tháng 8 2019 lúc 11:03

A B C D E M N I K

Dễ chứng minh I là trung điểm BD, K là trung điểm CE.

Ta có tính chất: Trong hình thang, đoạn thẳng nối trung điểm hai đường chéo song song với hai đáy và có độ dài bằng nửa hiệu độ dài hai đáy. (chưa nghĩ ra cách chứng minh)

Do đó xét hình thang BEDC có I và K là trung điểm hai đường chéo nên 

\(IK=\frac{BC-ED}{2}=\frac{BC-\frac{1}{2}BC}{2}=\frac{\frac{1}{2}BC}{2}=\frac{1}{4}BC=\frac{a}{4}\)

Từ từ nghĩ cách chứng minh tính chất trên nha!

tth_new
1 tháng 8 2019 lúc 11:05

Cách chứng minh tính chất ở đây nha:Tính chất

zZz Cool Kid_new zZz
1 tháng 8 2019 lúc 14:29

Bài này có trong nâng cao phát triển toán 8 trang 77 đây mà:3

Cách chứng minh ở đây nhé ! ( Link tth vào thì vào được nhưng mọi người ko biết:V )

Câu hỏi của zZz Cool Kid zZz - Toán lớp 8 - Học toán với OnlineMath

Duyên Tibi
Xem chi tiết
Hiếu
20 tháng 2 2018 lúc 10:53

Nối EF.

Ta có : trong tam giác ABC có EF là đườg trung bình => EF//BC

Gọi giao điểm của AI và EF là H, giao điểm của AK và EF là T.

=> HF//BI

=> Trong tam giác ABI có HF là đường trung bình => HF=BI/2

Mà D là trung điểm BC, mặt khác thì BI=IK=KC => D là trung điểm IK.

=> ID=IK/2=BI/2

=> HF=ID ( cùng =BI/2 )

Xét tam giác MID và MHF có : HF=ID 

HFM=MDI ( so le trong )

FHM=MID ( so le trong )

=> MID=MHF ( g.c.g )  => FM=MD

Bạn làm tương tự : chứng minh tam giác TNE=KND

=> DN=NE

Xét tam giác FDE có : DM=MF và DN=NE => MN là đường trung bình => MN//EF mà EF//BC 

Vậy MN//EF ( đpcm )

Duyên Tibi
20 tháng 2 2018 lúc 12:31

thank iu