gia tri lon nhat cua bieu thuc B = 5/2-|3x-7/6|
TIM GIA TRI LON NHAT CUA BIEU THUC :
C=2+12/3x/X+5/+4
TIM GIA TRI NHO NHAT CUA BIEU THUC
C= -15/ 4x / 3X+7/+3
1. cho x+y=7 va xy=8 gia tri cua bieu thuc x3+y3 = ?
2. gia tri lon nhat cua bieu thuc B= 1+3x-x2 la ?
1. cho x+y=7 va xy=8 gia tri cua bieu thuc x3+y3 = ?
2. gia tri lon nhat cua bieu thuc B= 1+3x-x2 la ?
voi A = 2 gia tri cua bieu thuc A la
A =
tim gia tri cua bieu thuc a de bieu thuc A co gia tri lon nhat tim gia tri lon nhat do
Tim gia tri nho nhat hoac gia tri lon nhat cua bieu thuc D = (x + 5)^2 + (2y - 6)^2 + 1
Nhỏ nhất:
D có giá trị nhỏ nhất khi: (x + 5)2 = 0 và (2y - 6)2 = 0
(x + 5)2 = 0
(x + 5)2 = 02
=> x + 5 = 0
x = 0 - 5
x = -5
(2y - 6)2 = 0
(2y - 6)2 = 02
=> 2y - 6 = 0
2y = 0 + 6
2y = 6
y = 6 : 2
y = 3
Ta có: D = 0 + 0 + 1 = 1
Lớn nhất:(không có giá trị lớn nhất)
TINH GIA TRI LON NHAT CUA BIEU THUC
B=9x-3x2
\(B=9x-3x^2=-3\times\left(x^2-2\times x\times\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2\right)=-3\times\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]\)
\(\left(x-\frac{3}{2}\right)^2\ge0\)
\(\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\)
\(-3\times\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]\le\frac{27}{4}\)
Vậy Max B = \(\frac{27}{4}\) khi x = \(\frac{3}{2}\)
\(B=9x-3x^2\)
\(=3\left(x^2-2x\right)\)
\(=3\left(x^2-2x+1-1\right)\)
\(=-3+3\left(x-1\right)^2\ge-3\)
Max \(B=-3\Leftrightarrow x-1=0\Rightarrow x=1\)
Tim gia tri nho nhat cua bieu thuc: P=|x|+7
(x€Z)
Tim gia tri lon nhat cua bieu thuc :Q=9-|x|
1) Ta có: P = |x| + 7 > hoặc = 7
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy Min P = 7 khi và chỉ khi x = 0
2) Ta có: Q = 9 - |x| < hoặc = 9
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy Max Q = 9 khi và chỉ khi x = 0
a)Ta có:\(\left|x\right|\ge0\Rightarrow P=\left|x\right|+7\)\(\ge7\)
Đẳng thức xảy ra khi: |x| = 0 => x = 0
Vậy giá trị nhỏ nhất của p là 7 khi x = 0
b) Ta có: \(\left|x\right|\ge0\Rightarrow-\left|x\right|\le0\Rightarrow Q=9-\left|x\right|=9+\left(-\left|x\right|\right)\le9\)
Đẳng thức xảy ra khi: -|x| = 0 => x = 0
Vậy giá trị lớn nhất của Q là 9 khi x = 0
1﴿ Ta có: P = |x| + 7 > hoặc = 7
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy Min P = 7 khi và chỉ khi x = 0
2﴿ Ta có: Q = 9 ‐ |x| < hoặc = 9
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy Max Q = 9 khi và chỉ khi x = 0
k nha bị âm r
a, tim gia tri nho nhat cua bieu thuc :\(A=\)\(|x+19|+|y-5|+1890\)
b,tim gia tri lon nhat cua bieu thuc:\(B=-|x-7|-|y+13|+1945\)
a)Vì \(\hept{\begin{cases}\left|x+19\right|\ge0;\forall x,y\\\left|y-5\right|\ge0;\forall x,y\end{cases}\Rightarrow\left|x+19\right|+\left|y-5\right|\ge0;\forall x,y}\)
\(\Rightarrow\left|x+19\right|+\left|y-5\right|+1890\ge1890;\forall x,y\)
Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x+19\right|=0\\\left|y-5\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-19\\y=5\end{cases}}}\)
Vậy Min A=1890 \(\Leftrightarrow\hept{\begin{cases}x=-19\\y=5\end{cases}}\)
b)Vì \(\hept{\begin{cases}-\left|x-7\right|\le0;\forall x,y\\-\left|y+13\right|\le0;\forall x,y\end{cases}}\)\(\Rightarrow-\left|x-7\right|-\left|y+13\right|\le0;\forall x,y\)
\(\Rightarrow-\left|x-7\right|-\left|y+13\right|+1945\le1945;\forall x,y\)
Dấu"="Xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x-7\right|=0\\\left|y+13\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=-13\end{cases}}\)
Vậy Max \(B=1945\Leftrightarrow\hept{\begin{cases}x=7\\y=-13\end{cases}}\)
tim gia tri lon nhat cua bieu thuc\(\frac{1}{3x-2\sqrt{6x}+5}\)
Ta có \(\frac{1}{3x-2\sqrt{6x}+5}=\frac{1}{\left(\left(\sqrt{3x}\right)^2-2.\sqrt{3x}.\sqrt{2}+2\right)+3}\)
\(=\frac{1}{\left(\sqrt{3x}-\sqrt{2}\right)^2+3}\le\frac{1}{3}\)
Vậy GTLN là \(\frac{1}{3}\)đạt được khi x = \(\frac{2}{3}\)