Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trúc Đỗ
Xem chi tiết
Tô Mì
9 tháng 3 2023 lúc 22:28

Đặt : \(A=\dfrac{n+1}{n+5}\) và \(B=\dfrac{n+3}{n+4}\).

Ta có : \(A=\dfrac{n+1}{n+5}=\dfrac{n+5-4}{n+5}=\dfrac{n+5}{n+5}-\dfrac{4}{n+5}=1-\dfrac{4}{n+5}\)

Và : \(B=\dfrac{n+3}{n+4}=\dfrac{n+4-1}{n+4}=\dfrac{n+4}{n+4}-\dfrac{1}{n+4}=1-\dfrac{1}{n+4}\)

Cả \(A\) và \(B\) đều có hạng tử \(1\) nên ta so sánh : \(\dfrac{4}{n+5}\) và \(\dfrac{1}{n+4}\).

Quy đồng ta được : 

\(\dfrac{4\left(n+4\right)}{\left(n+5\right)\left(n+4\right)}=\dfrac{4n+16}{\left(n+5\right)\left(n+4\right)}\) và \(\dfrac{n+5}{\left(n+4\right)\left(n+5\right)}\).

Do mẫu bằng nhau nên ta so sánh tử, ta thấy : 

\(4n+16-\left(n+5\right)=4n+16-n-5=3n+11\).

Do \(n\) là số tự nhiên nên \(3n\ge0\), suy ra \(3n+11\ge11\).

Suy ra được : \(4n+16-\left(n+5\right)=3n+11\ge11>0\) nên \(4n+16>n+5\).

Do đó, \(\dfrac{4}{n+5}>\dfrac{4}{n+4}\Rightarrow1-\dfrac{4}{n+5}< 1-\dfrac{4}{n+4}\).

Vậy : \(A< B\) hay \(\dfrac{n+1}{n+5}< \dfrac{n+3}{n+4}\).

Trần Hà Lan
Xem chi tiết
hoang linh dan
Xem chi tiết
Trang Thị Anh :)
11 tháng 7 2019 lúc 15:03

16 x 2n = 256 

 2n = 256 : 16 

2n = 16

2n = 24

=> n = 4 

Vậy n = 4 

\(16\times2^n=256\Leftrightarrow2^4\times2^n=2^9\Leftrightarrow2^{4+n}=2^9\Rightarrow4+n=9\Leftrightarrow n=9-4=5\)

Chủ acc bị dính lời nguy...
11 tháng 7 2019 lúc 15:04

Ta có :16.2n=256

       =>2n   =256:16

      =>2n    =16

      =>2n    =24

=> n=4

Vậy n=4

Đào Thanh Huyền
Xem chi tiết
Shiba Inu
9 tháng 5 2021 lúc 21:02

Ta có : \(\frac{n+1}{n+5}< \frac{n+1}{n+3}\)   mà \(\frac{n+1}{n+3}< \frac{n+2}{n+3}\)

\(\Rightarrow\)\(\frac{n+1}{n+5}< \frac{n+2}{n+3}\)\(,\forall\)\(n\in N\)

Khách vãng lai đã xóa
nguyen hoang khang
Xem chi tiết
Nguyễn Thị Giang
Xem chi tiết
Lê Vĩ Kỳ
Xem chi tiết
Bùi Thị Thu Hiền
Xem chi tiết
Trà My
11 tháng 5 2016 lúc 16:05

ta có: \(\frac{n}{n+3}=\frac{n\left(n+2\right)}{\left(n+3\right)\left(n+2\right)}=\frac{n^2+2n}{\left(n+3\right)\left(n+2\right)}\)

\(\frac{n+1}{n+2}=\frac{\left(n+1\right)\left(n+3\right)}{\left(n+2\right)\left(n+3\right)}=\frac{n^2+3n+n+3}{\left(n+2\right)\left(n+3\right)}\)

thấy rõ \(\frac{n^2+2n}{\left(n+3\right)\left(n+2\right)}<\frac{n^2+3n+n+3}{\left(n+3\right)\left(n+2\right)}\Rightarrow\frac{n}{n+3}<\frac{n+1}{n+2}\)

Ngoài ra bạn có thể sử dụng phương pháp so sánh phần bù

nguyễn thu hiền
Xem chi tiết