Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hiền nguyễn
Xem chi tiết
Vũ Mai Anh
Xem chi tiết
Kun'ss Sữa
Xem chi tiết
Cầm Dương
20 tháng 6 2017 lúc 15:29

Áp dụng tính chất đường phân giác trong tam giác ta có :\(\frac{IA}{ID}=\frac{AC}{CD}\)

Mà \(\frac{AC}{CD}=\frac{AB}{BD}\)  \(\frac{\Rightarrow IA}{ID}=\frac{AC}{CD}=\frac{AB}{BD}=\frac{AC+AB}{CD+BD}=\frac{AC+AB}{BC}\)

Kun'ss Sữa
20 tháng 6 2017 lúc 15:42

thks bạn nhiều

Kun'ss Sữa
Xem chi tiết
Nguyễn Trung Hiếu
Xem chi tiết
Phan Thanh Tịnh
22 tháng 9 2016 lúc 22:32

\(\left(\frac{ID}{AD}+\frac{IE}{BE}+\frac{IF}{CF}\right)\left(\frac{AD}{ID}+\frac{BE}{IE}+\frac{CF}{IF}\right)\ge\left(\sqrt{\frac{ID}{AD}}\sqrt{\frac{AD}{ID}}+\sqrt{\frac{IE}{BE}}\sqrt{\frac{BE}{IE}}+\sqrt{\frac{IF}{CF}}\sqrt{\frac{CF}{IF}}\right)^2\)

\(\Rightarrow\frac{AD}{ID}+\frac{BE}{IE}+\frac{CF}{IF}\ge\left(1+1+1\right)^2\Leftrightarrow\frac{IA+ID}{ID}+\frac{IB+IE}{IE}+\frac{IC+IF}{IF}\ge9\)

\(\Rightarrow\frac{IA}{ID}+\frac{IB}{IE}+\frac{IC}{IF}\ge6\)

Bạn ko hiểu chỗ nào thì hỏi mình nhé!

Hoàng Thanh Tùng
22 tháng 9 2016 lúc 19:31

tôi không biết

OIUoiu
22 tháng 9 2016 lúc 20:59

I don't know

Nguyễn Hải Yến
Xem chi tiết
Nguyễn Trung Hiếu
Xem chi tiết
Neet
22 tháng 9 2016 lúc 22:52

ta có: \(\frac{IA}{ID}+\frac{IB}{IE}+\frac{IC}{IF}=\frac{AD-ID}{ID}+\frac{BE-IE}{IE}+\frac{FC-FI}{FI}\)

=\(\frac{AD}{ID}+\frac{BE}{IE}+\frac{FC}{FI}-3\)

(từ A và I kẻ 2 đường thẳngAH,IK vuông góc vs BC(H,KϵBC) →áp dụng hệ quả  định lý tales :\(\frac{AD}{ID}=\frac{AH}{IK}\)mà AH và IK là 2 đường cao của 2 Δ có chung đáy  là ΔABCvà ΔBIC→\(\frac{AH}{IK}=\frac{SABC}{SBIC}\) ;làm tương tự vs các cạnh còn lại ,ta có:\(\frac{BE}{IE}=\frac{SABC}{SAIC};\frac{FC}{FI}=\frac{SABC}{SAIB}\))(cái này làm ngoài nháp thôi ,típ tục nèo)

=\(\frac{SABC}{SBIC}+\frac{SABC}{SAIC}+\frac{SABC}{SAIB}-3\)

=\(\frac{SAIB+SAIC+SBIC}{SBIC}+\frac{SAIB+SAIC+SBIC}{SAIC}+\frac{SAIB+SAIC+SBIC}{SAIB}-3\)

=\(3+\frac{SAIB}{SBIC}+\frac{SBIC}{SAIB}+\frac{SAIB}{SAIC}+\frac{SAIC}{SAIB}+\frac{SAIC}{SBIC}+\frac{SBIC}{SAIC}-3\)

Áp dụng BĐT coosshi cho 2 số dương ,ta có:

\(\frac{SAIB}{SBIC}+\frac{SBIC}{SAIB}\ge2\sqrt{\frac{SAIB}{SBIC}.\frac{SBIC}{SAIB}=2}\)tương tự ta có:\(\frac{SAIB}{SAIC}+\frac{SAIC}{SAIB}\ge2;\frac{SAIC}{SBIC}+\frac{SBIC}{SAIC}\ge2\)

vậy \(\frac{IA}{ID}+\frac{IB}{IE}+\frac{IC}{FI}\ge3+2+2+2-3=6\left(đfcm\right)\)

READ MADRID
Xem chi tiết
Hai Anh Vũ
Xem chi tiết