Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Ngọc Huy
Xem chi tiết
Cường Đào Tấn
Xem chi tiết
Lightning Farron
19 tháng 8 2016 lúc 14:08

Bài 1:

Giả sử có các số nguyên thỏa mãn các đẳng thức đã cho

Xét x3+xyz=x(x2+yz)=579 -->x lẻ.

Tương tự xét

y3+xyz=795; z3+xyz=975 ta đc: y,z là số lẻ

Vậy x3 là 1 số lẻ; xyz là 1 số lẻ, do đó x3+xyz là một số chẵn trái với đề bài

Vậy không tồn tại các số nguyên x,y,z thỏa mãn đẳng thức đã cho

Bài 2:

Ta có: VP=1984

Vì 2x-2y=1984>0 =>x>y

=>VT=2x-2y=2y(2x-y-1)

pt trở thành:

2y(2x-y-1)=26*31 

\(\Rightarrow\begin{cases}2^y=2^6\left(1\right)\\2^{x-y}-1=31\left(2\right)\end{cases}\)

Từ pt (1) =>y=6

Thay y=6 vào pt (2) đc:

2x-6-1=31 => 2x-6=32

=>2x-6=25

=>x-6=5 <=>x=11

Vậy x=11 và y=6

 

 

 

 

Ngọc Bích Sesshomaru
Xem chi tiết
Tung Duong
Xem chi tiết
Huỳnh Quang Sang
25 tháng 4 2019 lúc 20:24

Nhận xét : Ta thấy ngay x,y,z khác nhau và x từ 0 đến 9 ; y từ 0 đến 9 , z từ 0 đến 9, cho nên : \(0< x+y+z< 27(1)\)

\(\frac{1}{x+y+z}=\frac{\overline{xyz}}{1000}\Leftrightarrow\frac{1}{x+y+z}=0,\overline{xyz}\Rightarrow1=(x+y+z)\cdot0,\overline{xyz}\)

Nhân cả hai vế với 1000,ta được : \(1000=(x+y+z)\cdot\overline{xyz}\)

Vì \((1)\)nên \(x+y+z\)chỉ có thể nhận các giá trị 1,2,4,5,8,10,20,25

Thử : \(\frac{1000}{1}=1000;\frac{1000}{2}=500;\frac{1000}{4}=250;\frac{1000}{5}=200\)

\(\frac{1000}{8}=125;\frac{1000}{10}=100;\frac{1000}{20}=50;\frac{1000}{25}=40\)

Chỉ có trường hợp \(\frac{1000}{8}=125\)đúng vì 8 = 1 + 2 + 5

Vậy các chữ số cần tìm là : x = 1 , y = 2 , z = 5

Thử lại : \(\frac{1}{8}=0,125\)

Trần Phương Duy Tiên
Xem chi tiết
trần cảnh hưng
Xem chi tiết
gấu bắc cực thiến
Xem chi tiết
Bùi Minh Quân
Xem chi tiết
Nguyên Bá Đức Anh
Xem chi tiết