Tìm số tự nhiên n để n+4/n là một số nguyên
1. Tìm số nguyên dương n để P nguyên tố
P= n( n +1 )/2
2. Tìm số nguyên tố P để 2P+1 là lập phương của một số tự nhiên
3. Tìm n thuộc số tự nhiên khác 0 đển n^4 + 4 là số nguyên tố
Em tham khảo!
Câu 3: Câu hỏi của trần như - Toán lớp 8 - Học toán với OnlineMath
Câu 2: Câu hỏi của Hoàng Bình Minh - Toán lớp 8 - Học toán với OnlineMath
Tìm số tự nhiên n để biểu thức C=2n+2/n+2 + 5n+17/n+2 - 3n/n+2 là số tự nhiên
Cho phân số P=n+4/2n-1 với n thuộc Z. tìm số nguyên n để giá trị của P là số nguyên tố
Cho phân số M=n+1/n-1.Với giá trị nào của n thì M là một số chẵn?Một số nguyên âm?
Tìm các số nguyên n để các phân số sau có giá trị là một số nguyên; số nguyên âm;
số tự nhiên
a) n+4/n
b) n-2/4
c) 6/n-1
a) Để n+4/n có giá trị nguyên thì n+4\(⋮\)n
Vì n chia hết cho n nên 4 chia hết cho n
-->n thuộc Ư(4)={1;2;4}
Vậy n thuộc {1;2;4}
c) Để 6/n-1 có giá trị nguyên thì 6 chia hết cho n-1
-->n-1 thuộc Ư(6)={1;2;3;6}
+,n-1=1 \(\Rightarrow\)n=2
+,n-1=2 \(\Rightarrow\)n=3
+,n-1=3 \(\Rightarrow\)n=4
+,n-1=6 \(\Rightarrow\)n=7
Vậy n thuộc {2;3;4;7}
a) Tìm số nguyên dương n để 4n +4 là số nguyên tố
b) Tìm số nguyên dương n để n3 - n2 +n - 1 là số nguyên tố
c) Tìm số tự nhiên nhỏ nhất n để n4 + (n+1)4 là hợp số
Bài 2 Tìm số tự nhiên k để 31k là số nguyên số
Tìm số tự nhiên n để 17 n là số nguyên tố
Bài 2
Xét k=0 thì 31k=0(loại)
Xét k=1 thì 31k=31(chọn)
Xét k>1 thì 31k có 2 ước trở lên(loại)
Vậy k=1
Tìm các số nguyên n để các phân số sau có giá trị là một số nguyên; số nguyên âm;
số tự nhiên
a) n+4/n b) n-2/4 c) 6/n-1
1. Tìm các số tự nhiên n để \(n^5+n^4+1\)là số nguyên tố.
2. Tìm các số tự nhiên n để \(n^8+n+1\)là số nguyên tố.
Cảm ơn các bạn!
Với \(x=0\Rightarrow n^5+n^4+1=1\left(loai\right)\)
Với \(x=1\Rightarrow n^5+n^4+1=3\left(TM\right)\)
Với \(x\ge2\) ta có:
\(n^5+n^4+1\)
\(=n^5-n^2+n^4-n+n^2+n+1\)
\(=n^2\left(n^3-1\right)+n\left(n^3-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n-1\right)\left(n^2+n+1\right)+n\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=A\cdot\left(n^2+n+1\right)+B\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(A+B+1\right)\) là hợp số với mọi \(n\ge2\)
Vậy \(n=1\)
Với \(n=0\Rightarrow A=n^8+n+1=1\left(KTM\right)\) vì 1 không là SNT
Với \(n=1\Rightarrow A=n^8+n+1=3\left(TM\right)\) vì 3 là SNT
Với \(n\ge2\) ta có:
\(A=n^8+n+1\)
\(=\left(n^8-n^2\right)+n^2+n+1\)
\(=n^2\left(n^6-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left[\left(n^3\right)^2-1^2\right]+\left(n^2+n+1\right)\)
\(=n^2\left(n^3-1\right)\left(n^3+1\right)+\left(n^2+n+1\right)\)
\(=X\cdot\left(n^3-1\right)+\left(n^2+n+1\right)\)
\(=X\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=X'\left(x^2+n+1\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(X'+1\right)\) là hợp số với \(n\ge2\)
Vậy \(n=1\)
1) Để n5+n4+1 là số chính phương thì \(\orbr{\begin{cases}n^2+n+1=1\\n^5+n^4+1=n^2+n+1\end{cases}}\)
TH1: \(n^2+n+1=1\Leftrightarrow n\left(n+1\right)=0\Leftrightarrow n=0\left(n\inℕ\right)\)
Thử lại sai
TH2: \(n^2+n+1=n^5+n^4+1\)
\(\Leftrightarrow n^5-n^2+n^4-n=0\)
\(\Leftrightarrow n\left(n^3-1\right)\left(n+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}n=1\\n=0\end{cases}}\)
Thử lại thấy n=1 thỏa mãn
Vậy n=1
tìm số tự nhiên n để A =4/n+1 là số nguyên
A=4/n+1 là số nguyên
=>n+1∈Ư(4)
4=(1;-1;2;-2;4;-4)
n+1 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 0 | -2 | 1 | -3 | 3 | -5 |
Vậy n ∈(0;-2;1;-3;3;-5)
Chúc bạn học tốt!
Bài 3: Tìm số nguyên n để C=4n^2+n+4 là số chính phương.
Bài 4: Tìm số nguyên n để A=n^2+6n+2 là số chính phương.
Bài 5: Tìm số nguyên n để B=n^2+n+23 là số chính phương.
Bài 6: Tìm số tự nhiên n để M=1!+2!+3!+....+n! là số chính phương.
Bài 7: Tìm số nguyên n để N=n^2022+1 là số chính phương.