Chứng minh ab.(a-b) chia hết 2 (a;b thuộc N)
Chứng minh 3 số tự nhiên liên tiếp chia hết 3
Chứng minh trong 3 số tự nhiên liên tiếp có 1 số chia hết 3
a,Chứng tỏ rằng ab(a+b) chia hết cho 2 (a;b thuộc N)
b,Chứng minh rằng ab + ba chia hết cho 11
c,Chưnhs minh aaa luôn chia hết cho 37
d, Chứng minh aaabbb luôn chia hết cho 7
b) ab+ba
Ta có:ab=10a+b
ba=10b+a
ab+ba=10a+b+10b+a
= 11a + 11b
Ta thấy: 11a⋮11 ; 11b⋮11
=>ab+ba⋮11 (ĐPCM)
a) tổng 10615+8 có chia hết cho 2 và 9 không
b)tổng 10^2010+14 có chia hết cho3 và 2 không
c)hiệu 10^2010-4 có chia hết cho 3 không
d)chứng minh rằng aaa luôn chia hết cho 37
e)chứng minh aaabbb luôn chia hết cho 37
f)chứng tỏ rằng ab(a+b)chia hết cho 2(a;b thuộc N)
m)chứng minh ab+ba luôn chia hết cho 11
n)chứng minh ab-ba luôn chia hết cho 9 với a>b
a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2 nhưng 10615 không chia hết cho 2
10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9
c, B = 102010 - 4
10 \(\equiv\) 1 (mod 3)
102010 \(\equiv\) 12010 (mod 3)
4 \(\equiv\) 1(mod 3)
⇒ 102010 - 4 \(\equiv\) 12010 - 1 (mod 3)
⇒ 102010 - 4 \(\equiv\) 0 (mod 3)
⇒ 102010 - 4 \(⋮\) 3
b, B = 102010 + 14
Xét tổng các chữ có trong B là : 1 + 0 x 2010 + 4 = 6 ⋮ 3 ⇒ B ⋮ 3
B = 102010 + 14 = \(\overline{..0}\) + 4 = \(\overline{..4}\) ⋮ 2 vậy B ⋮ 2
a)chứng tỏ rằng ab(a+b) chia hết cho 2 (a;b thuộc N)
b)chứng minh rằng ab+ba chia hết cho 11
a) ab(a+b) = a2b + ab2 = 2ab2 chia hết cho 2
b)ab+ba
Ta có:ab=10a+b
ba=10b+a
ab+ba=10a+b+10b+a
= 11a + 11b
Ta thấy: 11a⋮11 ; 11b⋮11
=>ab+ba⋮11 (ĐPCM)
Bài tập:
a) Chứng tỏ rằng ab(a+b) chia hết cho 2 (a,b thuộc N)
b) Chứng minh rằng ab+ba chia hết cho 11(ko phải a nhân b, b nhân a nhé)
c) Chứng minh aaa (ko phải a.a.a nhé) luôn chia hết cho 37
d) Chứng minh aaabbb(ko phải a.a.a.b.b.b nhe) luôn chia hết cho 37
e) Chứng minh ab-ba chia hết cho 9 với a>b (ko phải a.b-b.a nhé)
Bài 1: Chứng minh rằng
a) P = (a+5)(a+8) chia hết cho 2
b) Q = ab(a+b) chia hết cho 2
Bài 2: cho a thuộc N. chứng minh a2-8 không chia hết cho 5
Bài 3: Chứng minh rằng n5-n chia hết cho 10
Bài 1:
a) P=(a+5)(a+8) chia hết cho 2
Nếu a chẵn => a+8 chẵn=> a+8 chia hết cho 2 => (a+5)(a+8) chia hết cho 2
Nếu a lẽ => a+5 chẵn => a+5 chia hết cho 2 => (a+5)(a+8) chia hết cho 2
Vậy P luôn chia hết cho 2 với mọi a
b) Q= ab(a+b) chia hết cho 2
Nếu a chẵn => ab(a+b) chia hết cho 2
Nếu b chẵn => ab(a+b) chia hết cho 2
Nếu a và b đều lẽ => a+b chẵn => ab(a+b) chia hết cho 2
Vậy Q luôn chia hết cho 2 với mọi a và b
bài 3:n5- n= n(n-1)(n+1)(n2+1)=n(n-1)(n+1)(n2+5-4)=n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1).
Vì: n(n-1)(n+1)(n-2)(n+2) là 5 số nguyên liên tiếp thì chia hết cho 10 (1)
ta lại có: n(n+1) là 2 số nguyên liên tiếp nên chia hết cho 2
=> 5n(n-1)n(n+1) chia hết cho 10 (2)
Từ (1) và (2) => n5- n chia hết cho 10
a) a lẻ suy ra a+5 chia hết cho 2
a chẵn suy ra a+8 chia hết cho 2
Cho 1 số có 2 chữ số có dạng ab
a. Chứng minh rằng tổng ab + ba thì chia hết cho tổng a + b
b. Chứng minh rằng hiệu ab - ba thì chia hết cho hiệu a - b, với a>b
a) ab + ba
= 10a + b + 10b + a
= 11a + 11b = 11(a+b)
Chia hết cho a + b
a) ab + ba
= 10a + b + 10b + a
= 11a + 11b = 11(a+b)
Chia hết cho a + b
a)ab+ba
=10a+b+10b+a
=11a+11b=11(a+b)
chai hết cho a+b
Cho a,b là các số nguyên:
a,chứng minh rằng nếu a chia 13 dư 2 và b chia 13 dư 3 thì a^2 + b^2 chia hết cho 13.
b, chứng minh rằng nếu a chia 19 dư 3, b chia cho 19 dư 2 thì a^2 + b^2 + ab chia hết cho 19
bài này thử là nhanh nhất (hi hi , mình đùa vui thôi chứ minh ko bít làm)
Câu a) a chia 13 dư 2 thì a2 chia 13 dư 4
b chia 13 dư 3 thì b2 chia 13 dư 9. Vậy a2 + b2 chia hết cho 13
Câu b) tương tự nhé bạn.
a) Chứng minh rằng: ab(a + b) chia hết cho 2 ( a;b \(\varepsilon\)N)
b) Chứng minh rằng ab + ba chia hế cho 11.
c) Chứng minh aaa luôn chia hết cho 37.
a) Chứng minh rằng: ab(a + b) chia hết cho 2 ( a;b εN)
TH1: a là số lẻ, b lẻ thì tổng a +b chẵn ==> ab(a + b) chia hết cho 2
TH2: a chẵn, b chẵn thì đương nhiên ab(a + b) chia hết cho 2 ( vì có 1 thừa số là số chẵn chia hết cho 2)
TH3: a chẵn, b lẻ hoặc a lẻ, b chẵn thì đương nhiên ab(a + b) cũng chia hết cho 2 ( vì có 1 thừa số là số chẵn chia hết cho 2)
b) Chứng minh rằng ab + ba chia hế cho 11.
ab + ba = 10a + b + 10b + a = 11a + 11b = 11(a+b) chia hết cho 11
c) Chứng minh aaa luôn chia hết cho 37.
aaa = a. 111 = a.37.3 chia hết cho 37
Cho a;b thuộc N*;a2+ b2 chia hết ab
Chứng minh a chia hết cho b, b chia hết cho a