:Cho E=1/3 + 2/3^2 + 3/3^3 + … + 100/3^100
Cho E= 1/3+2/3^2+3/3^3+...+100/3^100. Chứng minh rằng: E<3/4
@Đỗ Nguyễn Như Bình \(\frac{2}{3^2}\) hay là \(\frac{2^2}{3}\) hay là \(\left(\frac{2}{3}\right)^2\) vậy em???????????
Cho E=1/3+2/3^2+3/3^3+...+100/3^100
CMR: E<3/4
1/3E=1/3^2+2/3^3+...+100/3^101
E-1/3E=1/3+1/3^2+1/3^3+...+1/3^100-1/3^101
2/3E=1/3+1/3^2+1/3^3+...+1/3^100-1/3^101
Đặt B=1/3+1/3^2+...+1/3^100
1/3B=1/3^2+1/3^3+...+1/3^101
B-1/3B=1/3-1/3^101
2/3B=1/3-1/3^101
mà 1/3-1/3^101<1/3
=>2/3B<1/3
=>B<1/2
thay B vào E ta có
2/3E=B-1/3^101
Mà B-1/3^101<B
=>2/3E<B
Mà B<1/2
=>2/3E<1/2
=>E<3/4
k cho mk nha
Cho E= 1/3+2/3^2+3/3^3+...+100/3^100. Chứng minh rằng: E<3/4
Cho E = 1/3 + 2/3^2 + 3/3^3 + ... + 100/3^100
CMR: E < 3/4
cho E=(1/3)+(2/3^2)+...+(100/3^100)Chung minh E<(3/4)
Cho E=1/3+2/3^2+3/3^3+....+100/3^100
Chứng minh rằng E < 3/4
ta có : 1+1+1+1+1+1+1+1x0
=> 1x8 = 8
mà kòn x vs 0 nữa :
=> tổng đó =0
=> 0<3/4
=> E<3/4
Cho E=1/3+2/3^2+3/3^3+...+100/3^100
CMR: E<3/4
Cho E=1/3+2/32+3/33+....+100/3100. CMR E<3/4
Cho E=\(\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{100}{3^{100}}.\)Chứng minh:C<\(\dfrac{5}{3}\)