TÌm n nhỏ nhất để các phân số sau đây là phân số tối giản:
7/n+9, 8/n+10, 9/n+11,...31/n+33
tìm số tự nhiên n nhỏ nhất để các phân số sau đây là phân số tối giản :
\(\frac{7}{n+9};\frac{8}{n+10};\frac{9}{n+11};...;\frac{31}{n+33}\)
Các phân số đã cho đều có dạng \(\frac{a}{a+\left(n+2\right)}\)
Vì các phân số này tối giản nên n + 2 và a là số nguyên tố cùng nhau
Như vậy n + 2 phải nguyên tố cùng nhau với các số 7;8;9;....;31 và n + 2 là số nhỏ nhất
Vậy n + 2 phải là số nguyên tố nhỏ nhất lớn hơn 31 tức là n + 2 = 37, do đó số n cần phải tìm là 35
Tìm n là số tự nhiên nhỏ nhất để các phân số sau tối giản
7 / n+9; 8 / n+10;...; 31 / n+33
Tìm số tự nhiên n nhỏ nhất để các phân số sau là những phân số tối giản:
\(\frac{7}{n+9};\frac{8}{n+10};\frac{9}{n+11};\frac{10}{n+12};...;\frac{30}{n+21};\frac{31}{n+33}\)
Tìm số tự nhiên n nhỏ nhất để các phân số sau là những phân số tối giản:
\(\frac{7}{n+9};\frac{8}{n+10};\frac{9}{n+11};\frac{10}{n+12};...;\frac{30}{n+32};\frac{31}{n+33}\)
Tìm số tự nhiên n nhỏ nhất để các phân số sau đây tối giản:\(\frac{7}{n+9};\frac{8}{n+10};...;\frac{31}{n+33}\)
Tìm số tự nhiên n nhỏ nhất để các phân số sau đây là tối giản 7/n+9;8/n+10;9/n+11;...;31/n+33
tìm số tự nhiên n nhỏ nhất để các phân số sau tối giản: \(\frac{7}{n+9},\frac{8}{n+10},.....,\frac{31}{n+33}\)
Tìm số tự nhiên n nhỏ nhất để các phân số sau tối giản \(\frac{7}{n+9},\frac{8}{n+10},....,\frac{31}{n+33}\)
các phân số trên đưa về dạng : k/(n + k + 2) đặt là phân số (1)
với k= 7, 8, ..., 31
Muốn (1) tối giản <=> tử k và mẫu (n+k+2) không có ước chung > 1 khi k chạy từ 7, 8, ... , 31
Muốn vậy thì: n = 21
tìm số tự nhiên n nhỏ nhất để các phân số tối giản:
\(\frac{7}{n+9},\frac{8}{n+10},....,\frac{31}{n+33}\)