Chứng tỏ 7n+10 và 5n+7 là hai số nguyên tố cùng nhau
chứng tỏ rằng:Với mọi số tự nhiên N giá trị hai biểu thức 7n+10 và 5n+7 luôn là hai số nguyên tố cùng nhau
chứng tỏ rằng:(7n+10) và (5n+7) là 2 số nguyên tố cùng nhau (n thuộc N)
Đặt ƯCLN(7n+10;5n+7)=d
{ 7n+10⁝d =) {5(7n+10)⁝d=){ 35n+50⁝d
{ 5n+7⁝d =) {7(5n+7)⁝d=){ 35n+49⁝d
=)(35n+50-35n-49)⁝d
=)1⁝d=)d=1
Vậy 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau
Đặt \(7n+10;5n+7=d\left(d\inℕ^∗\right)\)
\(7n+10⋮d\Rightarrow35n+30⋮d\)
\(5n+7⋮d\Rightarrow35n+49⋮d\)
Suy rá : \(35n+49-35n-30⋮d\Leftrightarrow19⋮d\)
Vậy ta có đpcm
Nhầm rồi :<
\(7n+10;5n+7=d\left(d\inℕ^∗\right)\)
\(7n+10⋮d\Rightarrow35n+50⋮d\)
\(5n+7⋮d\Rightarrow35n+49⋮d\)
Suy ra : \(35n+50-35n-49⋮d\)
\(1⋮d\Rightarrow d=1\)Vậy ta có đpcm
Chứng minh rằng: Hai số 5n + 7 và 7n + 10 là hai số nguyên tố cùng nhau.
gọi d\(\in\)ƯC(5n+7;7n+10) thì \(\text{5(7n+10)−7(5n+7)}\) chia hết cho dd
\(\Rightarrow\)1 chia hết cho d
\(\Rightarrow\)d = 1
do đó 7n+10 và 5n+7 nguyên tố cùng nhau
gọi d∈∈ƯC(5n+7;7n+10) thì 5(7n+10)−7(5n+7)5(7n+10)−7(5n+7) chia hết cho dd
⇒⇒1 chia hết cho d
⇒⇒d = 1
do đó 7n+10 và 5n+7 nguyên tố cùng nhau
Chứng minh rằng 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau n ∈ N .
Gọi UCLN của 7n+10 và 5n+7 là d
7n+10 chia hết cho d => 5(7n+10) chia hết cho d
hay 35n+50 chia hết cho d
5n+7 chia hết cho d=> 7(5n+7) chia hết cho d
hay 35n+49 chia hết cho d
(35n+50)-(35n+49) chia hết cho d
35n+50-35n-49 chia hết cho d
(35n-35n)+(50-49) chia hết cho d
0+1 chia hết cho d
1 chia hết cho d => d=1
Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau
1.Tìm số tự nhiên n thuộc N*biết 1+3+5+7+...+(2n-1)=225.
2.Chứng tỏ rằng hai số 7n+10 và 5n+7 là hai số nguyên tố cùng nhau.
1.1+3+5+...+(2n-1)=225
<=>{[(2n-1)+1].[(2n-1)-1]:2 + 1} = 225
<=> (2n.2n):4 = 225
<=> n2=225
=> n = 15 và n = -15
Vì n thuộc N* nên n = 15 thỏa mãn
Giải:
1+3+5+...+(2n-1)=225
<=>{[(2n-1)+1].[(2n-1)-1]:2 + 1}/2 = 225
<=> (2n.2n):4 = 225
<=> n^2=225
suy ra n = 15 và n = -15
do n thuộc N* nên n = 15 thỏa mãn
gọi d > 0 là ước số chung của 7n+10 và 5n+7
=> d là ước số của 5.(7n+10) = 35n +50
và d là ước số của 7(5n+7)= 35n +49
mà (35n + 50) -(35n +49) =1
=> d là ước số của 1 => d = 1
vậy 7n+10 và 5n+7 nguyên tố cùng nhau.
tích nha
2.1)
2.Gọi d(d > 0) là ước số chung của 7n+10 và 5n+7
=> d là ước số của 5.(7n+10) = 35n +50
Và d là ước số của 7(5n+7)= 35n +49
Mà (35n + 50) -(35n +49) =1
=> d là ước số của 1
Mà Ư(1)=1
=> d = 1
Vậy 7n+10 và 5n+7 nguyên tố cùng nhau.
Chứng tỏ rằng 2 số tự nhiên 7n+10 và 5n+7 (n thuộc số tự nhiên ) là 2 số nguyên tố cùng nhau
Chứng minh rằng:7n+10 và 5n+7 là hai số nguyên tố cùng nhau với n thuộc N
Gọi UCLN của 7n+10 và 5n+7 là d
7n+10 chia hết cho d => 5(7n+10) chia hết cho d
hay 35n+50 chia hết cho d
5n+7 chia hết cho d=> 7(5n+7) chia hết cho d
hay 35n+49 chia hết cho d
(35n+50)-(35n+49) chia hết cho d
35n+50-35n-49 chia hết cho d
(35n-35n)+(50-49) chia hết cho d
0+1 chia hết cho d
1 chia hết cho d => d=1
Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau
Gọi UCLN của 7n+10 và 5n+7 là d
7n+10 chia hết cho d => 5(7n+10) chia hết cho d
hay 35n+50 chia hết cho d
5n+7 chia hết cho d=> 7(5n+7) chia hết cho d
hay 35n+49 chia hết cho d
(35n+50)-(35n+49) chia hết cho d
35n+50-35n-49 chia hết cho d
(35n-35n)+(50-49) chia hết cho d
0+1 chia hết cho d
1 chia hết cho d => d=1
Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau
Gọi UCLN của 7n+10 và 5n+7 là d
7n+10 chia hết cho d => 5(7n+10) chia hết cho d
hay 35n+50 chia hết cho d
5n+7 chia hết cho d=> 7(5n+7) chia hết cho d
hay 35n+49 chia hết cho d
(35n+50)-(35n+49) chia hết cho d
35n+50-35n-49 chia hết cho d
(35n-35n)+(50-49) chia hết cho d
0+1 chia hết cho d
1 chia hết cho d => d=1
Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau
Chứng minh rằng 7n+10 và 5n+7 là hai số nguyên tố cùng nhau (n ∈ N)
UCLN(7n+10;5n+7) = d
Ta có: 7n+10 ⋮ d và 5n+7 ⋮ d
=>5(7n+10) – 7(5n+7) ⋮ d
ó 1 ⋮ d hay d = 1
Vậy 7n +10 và 5n + 7 là hai số nguyên tố cùng nhau (n ∈ N)
Chứng tỏ các số sau là hai số nguyên tố cùng nhau:
a. 7n+ 10 và 5n+ 7
b.2n+ 3 và 4n + 8
c. 9n+ 24 và 3n + 4
d. 18n + 3 và 21n+ 7
a. Gọi d là ƯCLN ( 7n + 10 ; 5n + 7)
⇒ 7n + 10 chia hết cho d⇔5(7n + 10) chia hết cho d ⇔35n+50 chia hết cho d
và ⇒ 5n + 7 chia hết cho d ⇔ 7(5n + 7) chia hết cho d⇔35n+49 chia hết cho d
⇒35n+50-(35n+49) chia hết cho d⇔1 chia hết cho d⇒d=1
Vậy 7n + 10 và 5n + 7 là 2 số nguyên tố cùng nhau
b.
Giả sử d là ƯCLN ( 2n + 3 ;4n+8) và d là SNT
⇒ 4n + 8 chia hết cho d
và ⇒2n+3 chia hết cho d ⇔ 2(2n+3) chia hết cho d⇔4n+6 chia hết cho d
⇒4n+8-(4n+6) chia hết cho d⇔2 chia hết cho d và 2n+3 là số lẻ⇒d=1
Vậy 2n + 3 và 4n + 8 là 2 số nguyên tố cùng nhau
c.Gọi d là ƯCLN ( 9n + 24 và 3n + 4)
⇒ 9n + 24 chia hết cho d
và ⇒3n + 4 chia hết cho d ⇔ 3(3n+4) chia hết cho d⇔9n+12 chia hết cho d
⇒9n + 24-(9n+12) chia hết cho d⇔12 chia hết cho d và 3n + 4 ko chia hết cho 3 ⇒d=2
Để 9n + 24 và 3n + 4 là 2 số nguyên tố cùng nhau thì d≠≠ 2
⇒n ko chia hết cho 2
Vậy Nếu n ko chia hết cho 2 thì 9n + 24 và 3n + 4 là 2 số nguyên tố cùng nhau
d,
a. Gọi d là ƯCLN ( 18n + 3 ; 21n + 7)
⇒ 18n + 3 chia hết cho d⇔7( 18n + 3) chia hết cho d ⇔126n+21 chia hết cho d
và ⇒ 21n + 7 chia hết cho d ⇔ 6(21n + 7) chia hết cho d⇔126n+42 chia hết cho d
⇒126n+42-(126n+21) chia hết cho d⇔21 chia hết cho d⇒d∈{3;7}
Mà 18n+3 ko chia hết cho 7 và 21n+7 ko chia hết cho 3⇒d=1
Vậy 18n + 3 và 21n + 7 là 2 số nguyên tố cùng nhau
Ps: nhớ k
# Aeri #
giúp mik vs