Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cao Thanh Nga
Xem chi tiết
Pham Van Hung
1 tháng 8 2018 lúc 15:06

Bạn tính được \(\widehat{HMC}=30^0\)

Tam giác MHC vuông tại H (gt) có: \(\widehat{HMC}=30^0\) nên HC = 1/2 MC

E là trung điểm của BM (gt) \(\Rightarrow EB=EM=\frac{1}{2}BM\)

AM là đường trung tuyến (gt) nên M là trung điểm của BC và MB = MC

Từ 3 điêu trên, ta được HC = EB = EM . (1)

Bạn chứng minh được \(\Delta AEB=\Delta BHC\left(c.g.c\right)\Rightarrow AE=BH\) (2)

Từ (1) và (2) \(\Rightarrow AE.EM=BH.HC\left(đpcm\right)\) 

Chúc bạn học tốt.

_____Teexu_____  Cosplay...
Xem chi tiết
Lê Thị Thu hà
Xem chi tiết
trần tú trân
Xem chi tiết
Phạm Thanh Lâm
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 12 2021 lúc 22:12

a: Xét tứ giác AKMH có 

\(\widehat{AKM}=\widehat{AHM}=\widehat{HAK}=90^0\)

Do đó: AKMH là hình chữ nhật

Cao phuonglinh
Xem chi tiết
Cô Hoàng Huyền
31 tháng 8 2018 lúc 9:53

Em tham khảo bài 2 tại link dưới đây nhé.

Câu hỏi của Nguyễn Chí Thành - Toán lớp 8 - Học toán với OnlineMath

Nguyễn KHả Uyên
Xem chi tiết
Đồ Ngốc
Xem chi tiết
Phan Thanh Tịnh
7 tháng 11 2017 lúc 23:02

Dùng hình của bạn Ngọc nhé

a) \(\Delta ABC\)đều có \(\widehat{BAC}=60^0;\)đường cao AD cũng là phân giác và trực tâm H cũng là trọng tâm

I là trung điểm của cạnh huyền chung AM của các tam giác vuông \(\Delta AEM,\Delta AFM,\Delta ADM\)nên \(IA=IE=ID=IF=\frac{AM}{2}\)(1)

\(\widehat{EIM}\)là góc ngoài của \(\Delta AIE\)cân tại I nên \(\widehat{EIM}=2\widehat{BAM}\). Tương tự, \(\widehat{MID}=2\widehat{MAD};\widehat{MIF}=2\widehat{MAC}\)

\(\widehat{EID}=\widehat{EIM}+\widehat{MID}=2\left(\widehat{BAM}+\widehat{MAD}\right)=2\widehat{BAD}=\widehat{BAC}=60^0\)

\(\widehat{EIF}=\widehat{EIM}+\widehat{MIF}=2\left(\widehat{BAM}+\widehat{MAC}\right)=2.60^0=120^0\)

\(\Rightarrow\widehat{DIF}=120^0-60^0=60^0\)

\(\Delta EDI\)cân tại I có \(\widehat{EID}=60^0\)nên là tam giác đều, suy ra EI = ED (2)

\(\Delta FDI\)cân tại I có \(\widehat{DIF}=60^0\)nên là tam giác đều, suy ra FI = FD (3)

(1),(2),(3) => IE = ED = DF = IF => DEIF là hình thoi

b) Gọi P là trung điểm AH thì \(AP=PH=\frac{AH}{2}=HD\)

Cho ID cắt EF tại K thì K là trung điểm ID (tính chất hình thoi ABCD)

\(\Delta AMH\)có IP là đường trung bình nên IP // MH (4)

\(\Delta DPI\)có KH là đường trung bình nên IP // KH (5)

(4),(5) => M,K,H thẳng hàng. Vậy MH, ID, EF đồng quy tại K

Hoàng Lê Bảo Ngọc
17 tháng 11 2016 lúc 19:26

A B C D E F H I M O

1234567890
4 tháng 11 2018 lúc 7:52

d ở dưới

Lê Hương Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 3 2021 lúc 18:59

a) Xét ΔMNH vuông tại H và ΔNQP vuông tại P có 

\(\widehat{MNH}=\widehat{NQP}\)(hai góc so le trong, MN//QP)

Do đó: ΔMNH\(\sim\)ΔNQP(g-g)

Nguyễn Lê Phước Thịnh
31 tháng 3 2021 lúc 19:01

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNQ vuông tại M có MH là đường cao ứng với cạnh huyền NQ, ta được:

\(NH\cdot NQ=MN^2\)