Tính f(x)= x2 - 2019x4 - 2019x3 + 2019x2 - 2019x + 1 biết x = 2018
x3 + 2019x2 + 2019x + 2018
\(x^3+2019x^2+2019x+2018=x^2\left(x+2018\right)+x\left(x+2018\right)+\left(x+2018\right)=\left(x+2018\right)\left(x^2+x+1\right)\)
tính giá trị f(x)=x^6-2019x^5+2019x^4-2019x^3+2019x^2-2019x+1 tại x=2018
Ta có: x = 2018 \(\Rightarrow x+1=2019\).
\(f\left(x\right)=x^6-2019x^5+2019x^4-...-2019+1\)
\(=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-...-\left(x+1\right)x+1\)
\(=x^6-x^6-x^5+x^5+x^4-...-x^2-x+1\)
\(=-x-1=-2018-1=-2019\)
1
Tính giá trị đa thức
f(x)=-x+2019x2018-2019x207+.....-2019x2-2019x+2019
tại x=2018
Sửa đề nha :
f(x) = -x2019 + 2019x2018 - 2019x2017+...- 2019x2 + 2019x + 2019
Ta có : 2019 = 2018 + 1 = x + 1
=> f(x) = -x2019 + ( x + 1 )x2018 - ( x + 1 )x2017 + ... - ( x + 1 )x2 + ( x + 1 )x + 2019
= -x2019 + x2019 + x2018 - x2018 - x2017 + ... - x3 - x2 + x2 + x + 2019
= x + 2019
= 4037
Study well ! >_<
Bạn Hồng Anh làm sai rồi Ở -2019x (dấu trừ sao bạn đổi thành cộng ??)
Kq =1 nha (-2018+2019)
Hok tốt
a) Tính giá trị của đa thức f(x)=x^6 - 2019x^5 + 2019x^4 - 2019x^3 + 2019x^2 - 2019x + 1 tại x=2018.
b) Cho đa thức f(x)=ax^2 + bx + c với các hệ số a, b, c thõa mãn 11a - b + 5c =0. Chứng minh rằng f(1) và f(-2) không thể cùng dấu.
thực chất phép tính này chưa được thu gọ nó giống như phsp toaasn cấp 1 vậy nó được tách nhánh ra nhưng số chúng vẫn giống nhau nên chỉ cần thu gọn đa thức này vào rồi sau đó thay x = 2018 vô là xong
a)
Có : \(f\left(x\right)=x^6-2019x^5+2019x^4-...-2019x+1\)
\(=x^6-\left(2018+1\right)x^5+\left(2018+1\right)x^4-...-\left(2018+1\right)x+1\)
\(=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-...-\left(x+1\right)x+1\)
\(=x^6-\left(x^6+x^5\right)+\left(x^5+x^4\right)-...-\left(x^2+x\right)+1\)
\(=x^6-x^6-x^5+x^5+x^4-...-x^2-x+1\)
\(=-x+1\)
- Thay \(x=2018\)vào đa thức \(f\left(x\right)\)ta được:
\(f\left(2018\right)=-2018+1=-2017\)
Vậy \(f\left(2018\right)=-2017\)
b) -\(Có\) :\(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\hept{\begin{cases}f\left(1\right)=a.1^2+b.1+c=a+b+c\\f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c=4a-2b+c\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3.f\left(1\right)=3\left(a+b+c\right)=3a+3b+3c\\2.f\left(-2\right)=2\left(4a-2b+c\right)=8a-4b+2c\end{cases}}\)
- Xét \(3.f\left(1\right)=3a+3b+3c\)
\(=\left(11a-8a\right)+\left(4b-b\right)+\left(5c-2c\right)\)
\(=11a-8a+4b-b+5c-c\)
\(=\left(11a-b+5c\right)-\left(8a-4a+2c\right)\)
\(=0-2.f\left(-2\right)\)
\(=-2.f\left(-2\right)\)
\(\Rightarrow3.f\left(1\right)=-2.f\left(-2\right)\)
\(\Rightarrow3.f\left(1\right),2.f\left(-2\right)\)trái dấu nhau
\(\Rightarrow f\left(1\right)\)và \(f\left(-2\right)\)không cùng dấu \(\left(đpcm\right)\)
Tìm giá trị, biết x = 2018
f(x) = x6 - 2019x5 + 2019x4 - 2019x3 + 2019x2 - 2019x + 1
Cho \(A=x^{2018}-2019x^{2017}+2019x^{2016}-2019x^{2015}+...+2019x^2-2019x-1\)
Tính A tại x = 2018
Thay x = 2018 vào \(A=x^{2018}-2019x^{2017}+2019x^{2016}-2019x^{2015}+...+2019x^2-2019x-1\) ta được
\(2018^{2018}-2019.2018^{2017}+2019.2018^{2016}-2019.2018^{2015}+...+2019.2018^2-2019.2018-1\)
\(=\)\(2018^{2018}-2019\left(2018^{2017}-2018^{2016}+2018^{2015}-...-2018^2+2018\right)-1\)
Đặt \(B=2018^{2017}-2018^{2016}+2018^{2015}-...-2018^2+2018\)
\(2018B=2018^{2018}-2018^{2017}+2018^{2016}-...-2018^3+2018^2\)
\(2018B+B=\left(2018^{2018}-2018^{2017}+...+2018^2\right)+\left(2018^{2017}-2018^{2016}+...+2018\right)\)
\(2019B=2018^{2018}-2018\)
\(B=\frac{2018^{2018}-2018}{2019}\)
\(\Rightarrow\)\(A=2018^{2018}-2019.B-1\)
\(\Rightarrow\)\(A=2018^{2018}-\frac{2019\left(2018^{2018}-2018\right)}{2019}-1\)
\(\Rightarrow\)\(A=2018^{2018}-\left(2018^{2018}-2018\right)-1\)
\(\Rightarrow\)\(A=2018^{2018}-2018^{2018}+2018-1\)
\(\Rightarrow\)\(A=2018-1\)
\(\Rightarrow\)\(A=2017\)
Vậy giá trị của \(A=2017\) tại \(x=2018\)
Chúc bạn học tốt ~
N(x)= \(^{^{x^{2018}}-2019x^{2017}+2019x^{2016}+...+2019x^2+2019x+2018}\)
tính N(2018)
1 bài toán lớp 7 hay
cho x =2018 tính giá trị của biểu thức:
\(x^{2018}-2019x^{2017}+2019x^{2016}-2019x^{2015}+...+2019x^2-2019x+1\)
Vào Tkhđ của mik xem có ảnh ko nhé !
https://m.imgur.com/a/o7Vo0kL
CHịu khó gõ link.onl đt bèn làm ntnày thôi nha
Ảnh trên không hiện rồi nhé !
Cho x=2017.Tính giá tri của biểu thức :
\(B=x^{2018}-2019x^{2017}+2019x^{2016}-2019x^{2015}+...-2019x^2+2019x-1\)