giải phương trình
\(\frac{1}{x-3}+\frac{x}{x+3}=\frac{2}{x^2-9}\)
\(x^2-1=\left|x+1\right|\)
Giải các phương trình:
1.\(x^2+\frac{9x^2}{\left(x+3\right)^2}=27\)
\(2.\left(\frac{x-1}{x}\right)^2+\left(\frac{x-1}{x-2}\right)^2=\frac{40}{9}\)
\(3.\left(x^2+\frac{1}{x^2}\right)+5\left(x^2+\frac{1}{2}\right)-12=0\)
Giải phương trình \(\frac{1}{\left(x^2+5\right)\left(x^2+4\right)}+\frac{1}{\left(x^2+4\right)\left(x^2+3\right)}+\frac{1}{\left(x^2+3\right)\left(x^2+2\right)}+\frac{1}{\left(x^2+2\right)}+\frac{1}{\left(x^2+1\right)}\)
AYUASGSHXHFSGDB HAGGAHAJF
Rút gọn phương trình
1. A= \(\frac{x}{x-3}-\frac{x^2+3x}{2x+3}\left(\frac{x+3}{x^2-3x}-\frac{x}{x^2-9}\right)\)
2. B= \(\left[\frac{x^2}{x^2-1}-\frac{x^2}{x^2+1}\left(\frac{x}{x+1}+\frac{1}{x^2+x}\right)\right]:\frac{1}{x-1}\)
Giải cụ thể giúp em với ạ, em cảm ơn
ĐẠI SỐ
1. Giải các phương trình sau :
a) \(\frac{25x-655}{95}-\frac{5\left(x-12\right)}{209}=\frac{89-3x-\frac{2\left(x-18\right)}{5}}{11}\)
b) \(\frac{8\left(x+22\right)}{45}-\frac{7x+149+\frac{6\left(x+12\right)}{5}}{9}=\frac{x+35+\frac{2\left(x+50\right)}{9}}{5}\)
c) \(\frac{x+\frac{2\left(3-x\right)}{5}}{14}-\frac{5x-4\left(x-1\right)}{24}=\frac{7x+2+\frac{9-3x}{5}}{12}+\frac{2}{3}\)
2. Giải các bất phương trình sau :
a) \(5+\frac{x+4}{5}< x-\frac{x-2}{2}+\frac{x+3}{3}\)
b) \(x+1-\frac{x-1}{3}< \frac{2x+3}{2}+\frac{x}{3}+5\)
c) \(\frac{\left(3x-2\right)^2}{3}-\frac{\left(2x+1\right)^2}{3}\le x\left(x+1\right)\)
d) \(\frac{2x+3}{4}-\frac{x+1}{3}\ge\frac{1}{2}-\frac{3-x}{5}\)
\(\frac{25x-655}{95}-\frac{5\left(x-12\right)}{209}=\frac{89-3x-\frac{2\left(x-18\right)}{5}}{11}\)
\(< =>\frac{5x-131}{19}=\frac{1631-52x-\frac{38x-684}{5}}{209}\)
\(< =>\left(5x-131\right)209=\left(1631-52x-\frac{38x-684}{5}\right)19\)
\(< =>55x-1441=1631-52x-\frac{38x-684}{5}\)
\(< =>3072-107x=\frac{38x-684}{5}\)
\(< =>\left(3072-107x\right)5=38x-684\)
\(< =>15360-535x-38x-684=0\)
\(< =>14676=573x< =>x=\frac{14676}{573}=\frac{4892}{191}\)
nghệm xấu thế
\(\frac{8\left(x+22\right)}{45}-\frac{7x+149+\frac{6\left(x+12\right)}{5}}{9}=\frac{x+35+\frac{2\left(x+50\right)}{9}}{5}\)
\(< =>\frac{8x+176}{45}-\frac{41x+817}{45}=\frac{11x+415}{45}\)
\(< =>993-33x-11x-415=0\)
\(< =>578=44x< =>x=\frac{289}{22}\)
Bài 1:
b) Phương trình đã cho tương đương với phương trình:
\(\frac{8\left(x+22\right)-55\left(7x+149\right)-6\left(x+12\right)}{45}=\frac{9\left(x+35\right)+2\left(x+50\right)}{45}\)
\(\Leftrightarrow44x=-1056\)
\(\Leftrightarrow x=-24\)
Vậy x=-24 là nghiệm của phương trình
c) Phương trình đã cho tương đương với phương trình:
\(\frac{3x+6}{70}-\frac{x+4}{24}=\frac{32x+19}{60}+\frac{2}{3}\)
\(\Leftrightarrow12\left(3x+6\right)-35\left(x+4\right)=14\left(32x+19\right)+560\)
\(\Leftrightarrow-447x=894\)
\(\Leftrightarrow x=-2\)
Vậy x=-2 là nghiệm của phương trình
giải bất phương trình
a.\(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}>\frac{x^2}{7}-\frac{2x-3}{5}\)
b.\(\frac{6x+1}{18}+\frac{x+3}{12}\le\frac{5x+3}{6}+\frac{12-5x}{9}\)
2.Giải phương trình
b.\(\frac{\left|2x-1\right|}{x-1}+1=\frac{1}{x-1}\)
Cái bài đầu giải BPT bn ghi cái dj ak ,mik cx k hỉu nữa
V mik giải bài 2 nghen, sửa lại đề bài đầu rồi mik giải cho
\(3x-3=|2x+1|\)
Điều kiện: \(3x-3\ge0\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=3x-3\\2x+1=-3x+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3x=-1-3\\2x+3x=-1+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=-3\\5x=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\left(n\right)\\x=\frac{2}{5}\left(l\right)\end{cases}}}\)
Vậy S={3}
Cài đề câu b ,bn xem lại nhé!
\(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}>\frac{x^2}{7}-\frac{2x-3}{5}\)
\(\Leftrightarrow\frac{2x-3}{35}+\frac{5x\left(x-2\right)}{35}-\frac{5x^2}{35}+\frac{7\left(2x-3\right)}{35}>0\)
\(\Leftrightarrow2x-3+5x\left(x-2\right)-5x^2+7\left(2x-3\right)>0\)
\(\Leftrightarrow2x-3+5x^2-10x-5x^2+14x-21>0\)
\(\Leftrightarrow6x-24>0\)
\(\Leftrightarrow x>4\)
VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG TRÌNH LÀ : S = { \(x\text{\x}>4\)}
\(\frac{6x+1}{18}+\frac{x+3}{12}\le\frac{5x+3}{6}+\frac{12-5x}{9}\)
\(\Leftrightarrow\frac{6\left(6x+1\right)}{108}+\frac{9\left(x+3\right)}{108}\le\frac{18\left(5x+3\right)}{108}+\frac{12\left(12-5x\right)}{108}\)
\(\Leftrightarrow36x+6+9x+27\le90x+54+144-60x\)
\(\Leftrightarrow36x+6+9x+27-90x-54-144+60x\le0\)
\(\Leftrightarrow15x-165\le0\)
\(\Leftrightarrow x\le11\)
VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG trình ..........
tk mk nka !!! chúc bạn học tốt !!!
Giải phương trình: \(\frac{1}{\left(x-1\right)^3}+\frac{1}{x^3}+\frac{1}{\left(x+1\right)^3}=\frac{1}{3x\left(x^2+2\right)}\)
bạn tham khảo thêm cách này nha Shonogeki No Soma
ĐK: \(\hept{\begin{cases}x\ne0\\x\ne1\\x\ne-1\end{cases}}\)
Đặt \(a=\left(x-1\right)^3;b=x^3;c=\left(x+1\right)^3\)
pt đã cho đc viết lại thành
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}a=-b\\b=-c\\c=-a\end{cases}}\) (kí hiệu [..] mới đúng nha)
- TH1: a = -b hay \(\left(x-1\right)^3=-x^3\) \(\Leftrightarrow2x^3-3x^2+3x-1=0\) \(\Leftrightarrow x=\frac{1}{2}\) (Nhận)
- TH2: b = -c hay \(\left(x+1\right)^3=-x^3\) \(\Leftrightarrow2x^3+3x^2+3x+1=0\) \(\Leftrightarrow x=-\frac{1}{2}\) (Nhận)
- TH3: c = -a hay \(\left(x+1\right)^3=-\left(x-1\right)^3\) \(\Leftrightarrow x=0\) (Loại)
KL: \(S=\left\{\frac{1}{2};-\frac{1}{2}\right\}\)
\(\frac{1}{\left(x-1\right)^3}+\frac{1}{\left(x+1\right)^3}+\frac{1}{x^3}=\frac{1}{3x\left(x^2+2\right)}\)
\(\Leftrightarrow4x^8+15x^6+12x^4+8x^2-6=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)\left(x^2+3\right)\left(x^2-x+1\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{1}{2}\end{cases}}\)
giải phương trình
\(\frac{1}{x-3}+\frac{x}{x+3}=\frac{2}{x^2-9}\)
\(^{x^2-1=\left|x+1\right|}\)
a) \(ĐKXĐ:x\ne\pm3\)
\(\frac{1}{x-3}+\frac{x}{x+3}=\frac{2}{x^2-9}\)\(\Leftrightarrow\frac{x+3}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{x+3+x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow x+3+x\left(x-3\right)=2\)\(\Leftrightarrow x+3+x^2-3x=2\)
\(\Leftrightarrow x+3+x^2-3x-2=0\)\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)\(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)( thoả mãn ĐKXĐ )
Vậy tập nghiệm của phương trình là \(S=\left\{1\right\}\)
b) \(x^2-1=\left|x+1\right|\)(1)
TH1: Nếu \(x+1< 0\)\(\Leftrightarrow x< -1\)
\(\Rightarrow\left|x+1\right|=-\left(x+1\right)\)
(1) \(\Leftrightarrow x^2-1=-\left(x+1\right)\)\(\Leftrightarrow x^2-1+x+1=0\)
\(\Leftrightarrow x^2+x=0\)\(\Leftrightarrow x\left(x+1\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
So sánh với ĐK ta thây không có giá trị nào của x thoả mãn
TH2: Nếu \(x+1\ge0\)\(\Leftrightarrow x\ge-1\)
\(\Rightarrow\left|x+1\right|=x+1\)
(1) \(\Leftrightarrow x^2-1=x+1\)\(\Leftrightarrow x^2-1-x-1=0\)
\(\Leftrightarrow x^2-x-2=0\)\(\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
So sánh với ĐKXĐ ta thấy cả 2 giá trị của x đều thoả mãn
Vậy tập nghiệm của phương trình là \(S=\left\{-1;2\right\}\)
\(\frac{1}{x-3}+\frac{x}{x+3}=\frac{2}{x^2-9}\left(x\ne\pm3\right)\)
\(\Leftrightarrow\frac{1}{x-3}+\frac{x}{x+3}-\frac{2}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{x+3}{\left(x-3\right)\left(x+3\right)}+\frac{x^2-3x}{\left(x-3\right)\left(x+3\right)}-\frac{2}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{x+3+x^2-3x-2}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{x^2-2x+1}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{\left(x-1\right)^2}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
<=> x-1=0
<=> x=1 (tmđk)
Giải phương trình:
\(\frac{1}{\left(x-1\right)^3}+\frac{1}{x^3}+\frac{1}{\left(x+1\right)^3}=\frac{1}{3x\left(x^2+2\right)}\)
\(\frac{1}{\left(x-1\right)^3}+\frac{1}{\left(x+1\right)^3}+\frac{1}{x^3}-\frac{1}{3x\left(x^2+2\right)}=0\)
\(\Leftrightarrow\frac{x\left(2x^2+6\right)}{\left(x^2-1\right)^3}+\frac{2x^2+6}{3x^3\left(x^2+2\right)}=0\)
\(\Leftrightarrow\frac{x}{\left(x^2-1\right)^3}+\frac{1}{3x^3\left(x^2+2\right)}=0\)
\(\Leftrightarrow4x^6+3x^4+3x^2-1=0\)
Đặt \(x^2=a\)
\(\Rightarrow4a^3+3a^2+3a-1=0\)
\(\Leftrightarrow\left(4a-1\right)\left(a^2+a+1\right)=0\)
\(\Leftrightarrow4a=1\)
\(\Rightarrow4x^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)
Bài lớp mấy mà khó vậy!Mình ko hiểu!
B1 :Giải phương trình
a,\(\frac{3\left(x-3\right)}{4}-1=\frac{2x+3\left(x+1\right)}{6}-\frac{7+12x}{12}\)
b,\(\left(x+2\right)\left(3-4x\right)=x^2+4x+4\)
c,\(\frac{x-2}{x+2}-\frac{3}{x-2}=\frac{2\left(x-11\right)}{x^2-4}\)
d,I7-xI-5x=1
B2:Giải bất phương trình
a,\(\left(x-2\right)\left(x+2\right)\ge x\left(x-4\right)\)
b,\(\frac{x-1}{4}-1\ge\frac{x+1}{3}+8\)
1.Giải các phương trình
1) \(\frac{3x-1}{x-1}-\frac{2x+5}{x+3}+\frac{4}{x^2+2x-3}=1\)
2) \(2x\left(8x-1\right)^2\left(4x-1\right)=9\)
3) \(\left(\frac{x-1}{99}+x-99\right)+\left(\frac{x-3}{97}+\frac{x-7}{93}\right)+\left(\frac{x-5}{95}+\frac{x-95}{5}\right)=6\)
2. Giải các bất phương trình
1) \(\left(x+1\right)^2\left(x+2\right)+\left(x+1^2\right)\left(x-2\right)>12\)
2) \(\frac{x-214}{86}+\frac{x-132}{84}+\frac{x-54}{82}>6\)
Xin mn hãy giúp mk. Cảm ơn rất nhiều!!!