Tìm tất cả số tự nhiên n để 3n+9n+36 là số nguyên tố
Tìm tất cả các số tự nhiên để 3^n+9n+36 là số nguyên tố
Tìm tất cả các số tự nhiên n để n2+16n là số nguyên tố
Tìm tất cả các số tự nhiên a để19a-8a là số nguyên tố
Tìm tất cả các số tự nhiên để 3n+60 là số nguyên tố
Tìm tất cả các số tự nhiên n để:3n +9n+36 là số nguyên tố
Các bạn giúp mình nha mình đang cần gấp cảm ơn nhiều
Với n = 0 thì 3n + 9n + 36 là số nguyên tố (t/m)
Với n > 0 thì 3n chia hết cho 3, 9n chia hết cho 3, 36 chia hết cho 3 => 3n + 9n + 36 chia hết cho 3 mà 3n + 9n + 36 > 3 => 3n + 9n + 36 là hợp số (loại)
Vậy n = 0
Vì:3^n+9*n+36 là số nguyên tố
Nên:n phải bằng 0
VD:Cho n là 3
Thì luc này tổng là ..........nhưng sẽ kô là số nguyên tố
Vì : Số chia hết cho 2 + số chia hết cho 3 sẽ bằng số chia hết cho 2 hoặc 3
Nguyễn Quang Đức sai rồi tôi lỡ ấn lộn
b) Tìm tất cả các số tự nhiên n để 3n + 6 là số nguyên tố.
b) n = 0 ta có: 3n + 6 = 30 + 6 = 7 là số nguyên tố
n ≠ 0 ta có 3n ⋮ 3 ; 6 ⋮ 3 nên 3n + 6 ⋮ 3 ; 3n + 6 > 3
Số 3n + 6 là hợp số vì ngoài ước 1 và chính nó còn có ước là 3.
Vậy với n = 0 thì 3n + 6 là số nguyên tố.
Tìm tất cả các số tự nhiên n để 3n+6 là số nguyên tố
\(3n+6⋮3\)
Số nguyên tố duy nhất chia hết cho 3 là 3
\(\Rightarrow3n+6=3\Leftrightarrow3n=-3\Leftrightarrow n=-1\) . Vậy n=1
Mình thiếu, -1 không là số tự nhiên nên không có số n nào thoả mãn đề bài
ko có n thỏa mãn đề bài mà bạn
Tìm số tự nhiên n để các số 9n + 24 và 3n +4 là các số nguyên tố cùng nhau
Có số mà bạn
Tìm số tự nhiên n để các số 9n+24 và 3n+4 là các số nguyên tố cùng nhau
1. Xét n chẵn, hai số đều chẵn => ko nguyên tố cùng nhau
2. Xét n lẻ, ta chứng minh 2 số này luôn nguyên tố cùng nhau
9n+24 = 3(3n+8)
Vì 3n+4 không chia hết cho 3, nên ta xét tiếp 3n+8
Giả sử k là ước số của 3n+8 và 3n+4, đương nhiên k lẻ (a)
=> k cũng là ước số của (3n+8)-(3n+4) = 4 => k chẵn (b)
Từ (a) và (b) => Mâu thuẫn
Vậy với n lẻ, 2 số đã cho luôn luôn nguyên tố cùng nhau
k là ước của 4 thì đúng, nhưng sao k lại chẵn ?????????
4 cũng có một ước lẻ là 1 mà .
Đoạn cuối lẽ ra phải giải như sau:
k cũng là ước của ( 3n + 8 ) - ( 3n + 4 ) = 4 . Mà k lẻ => k = 1.
=> với n lẻ, hai số trên nguyên tố cùng nhau
Tìm số tự nhiên n để các số 9n+24 và 3n+4 là các số nguyên tố cung nhau
Tìm số tự nhiên n để 9n+24 và 3n+1 là các số nguyên tố cùng nhau
tìm tất cả n là số tự nhiên để 2n+1, 3n+1 là số chính phương, 2n+9 là số nguyên tố
Do \(2n+1\) và \(3n+1\) là các số chính phương dương nên tồn tại các số nguyên dương a,b sao cho \(2n+1\)\(=a^2\) và \(3n+1=b^2\). Khi đó ta có:
\(2n+9=25.\left(2n+1\right)-16.\left(3n+1\right)=25a^2-16b^2=\left(5a-4b\right).\left(5a+4b\right)\)
Do \(2n+9\) là nguyên tố,\(5a+4b>1\) và \(5a+4b>5a-4b\) nên ta phải có \(5a-4b=1\), tức là: \(b=\dfrac{5a-1}{4}\)
\(\Rightarrow\) ta có: \(\left\{{}\begin{matrix}2n+1=a^2\left(1\right)\\3n+1=\dfrac{\left(5a-1\right)^2}{16}\left(2\right)\end{matrix}\right.\)
Từ (1) : \(2n+1=a^2\Rightarrow n=\dfrac{a^2-1}{2}\) và a > 1 ( do n>0)
Thay vào (2): \(\dfrac{3.\left(a^2-1\right)}{2}+1=\dfrac{\left(5a-1\right)^2}{16}\) => (a - 1).(a - 9) = 0
=> a = 9. Từ đó ta có n = 40
Vậy duy nhất một giá trị n thỏa mãn yêu cầu đề bài là : n = 40